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Abstract

Static analysis tools can automatically �nd and report a large number of issues in source

code and can therefore be an important help for programmers. The number of available

static analyses and their e�ectiveness is currently limited by the fact that writing them

is di�cult as well as language- and implementation-speci�c. This thesis proposes a

declarative Domain-Speci�c Language (DSL) that allows specifying static analyses that

operate on (abstract) syntax trees. In addition to the proposed concept, a proof-of-concept

implementation in the Rust programming language is presented. An evaluation of the

concept shows that common static analyses can be expressed using the proposed system

and indicates that using the proposed system is easier compared to traditional approaches.
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Zusammenfassung

Statische Analyse Werkzeuge können automatisch große Mengen von Problemen in Pro-

grammcode �nden und sind somit eine wichtige Hilfe für Programmierer. Die Anzahl

verfügbarer statischer Analysen und deren E�ektivität ist aktuell dadurch limitiert, dass

sie schwierig zu schreiben sowie sprach- und implementierungsabhängig sind. Diese

Abschlussarbeit stellt eine neue deklarative Domain-Speci�c Language (DSL) vor, die das

Spezi�zieren von statischen Analysen, die auf (Abstract) Syntax Trees operieren, ermög-

licht. Zusätzlich zu dem vorgeschlagenen Konzept wurde im Rahmen der vorliegenden

Arbeit eine Proof of Concept Implementierung in der Programmiersprache Rust entwickelt.

Eine Evaluierung des Konzeptes zeigt, dass übliche statische Analysen mit dem vorgeschla-

genen System ausgedrückt werden können und weist darauf hin, dass das vorgeschlagene

System verglichen zu traditionellen Ansätzen einfacher ist.
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1. Introduction

Writing “good” programs is hard. It requires programmers not only to write correct

programs (that do what they’re supposed to do), but also to think about other aspects

like documentation, writing idiomatic code, code complexity, formatting and so on. Even

though these other aspects don’t necessarily a�ect the quality of the resulting executable

program, they can have a signi�cant impact on the readability and maintainability of the

source code.

Theoretically, all issues in a program could be revealed during code review performed by

other programmers, but in practice, the e�ectiveness of this technique highly depends on

the reviewers’ skills and dedication towards the review task. Also, because it’s a manual

technique, it doesn’t scale very well and might be too expensive or time-consuming to

perform regularly. Having Humans perform similar tasks regularly also leads to careless

mistakes.

An alternative to manual code reviews are programs that analyze source code and run

checks for potential issues. A large subset of these programs analyze code without actually

executing it and are knows as static analysis tools or linters (named after one of the �rst

static analysis tools called lint [8]).

Static analysis tools

Static analysis tools can automatically �nd and report issues in source code. They can

be run frequently in a project or be used to analyze an existing codebase. If new issues

are identi�ed, static analysis tools can be updated and used to check all existing code for

occurrences of that issue. Static analysis tools can theoretically automate a lot of the work

that’s currently done in manual code review and could therefore improve code quality

while reducing development cost at the same time.

Static analysis tools di�er in the kinds of analyses they perform, ranging from simple style

checking to complex type checking or program veri�cation analyses [1]. In the following,

style checking and bug �nding static analyses are presented in more detail.

Style checking static analyses detect issues that might not a�ect a program’s runtime

correctness, but rather the program’s readability and maintainability. This includes issues

related whitespace, naming, commenting and program structure. [1]
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1. Introduction

Many programming language communities and organizations have realized that code style

has a signi�cant impact on code readability / maintainability and have creates so-called

“style guides” that describe how programs in that language should be written. Examples of

popular style guides include Python’s PEP8 [19], Google’s C++ Style Guide [6] and many

more. Style checking static analyses can be used to automate most of the rules expressed

in style guides.

Automatic code formatters are tools that apply a consistent formatting (whitespace, in-

dentation, line lengths, use of parenthesis) to source code. Automatic formatting tools are

available for a lot of popular programming languages and newer languages increasingly

make using them part of their “best practices”. More and more projects and users use

them frequently (e.g. before committing code) to ensure consistent formatting across their

projects. Automatic code formatters perform style checking static analyses, but the rules

they enforce are usually very conservative. Automatic code formatters can nowadays

enforce low-level stylistic rules like where to use whitespace reliably.

Another category of static analyses are bug �nding static analyses. Bug �nding static

analyses search for patterns in source code that might indicate bugs [1]. An example

of such a pattern could be an if statement that has a condition that can never be true

(e.g. if(false){...}). It is unlikely that this is intended behavior and therefore most likely

a bug that should be reported to the user. Another example for a pattern could be calling a

pure function (a function without side-e�ects) without using its return value.

In the following, this thesis focuses on static analysis tools that use the following types of

static analyses:

• “High-level” style checking: While automatic code formatting tools handle low-

level styling (whitespace, line lengths, . . . ) reasonably well, they typically can’t

improve code style in more advanced ways. Checking style on a higher level could

detect unidiomatic code (e.g. manually implementing a for loop using a while loop

and a variable) and recommend to replace that code with a better solution. High-

level code style checking could even detect larger program fragments (like manually

implementing binary search) and recommend using a well-tested library instead.

• Bug �nding: Even though compilers might already enforce certain correctness

properties in source code (e.g. type-checking), there are a lot of possible bugs they

can’t detect (e.g. x == x). Bug �nding static analyses can also contain rules that

detect higher-level logical errors in source code that is correct from the compiler’s

point of view.

The main task of these kinds of static analyses is �nding code snippets that have certain

properties. Examples of such properties could be

• an addition that has no e�ect (e.g. x + 0),

• a function that has a parameter that isn’t used in the function body or

• an if statement which has a condition that’s always true (e.g. if(true){...}).

2



1.1. Problem Statement

The di�culty of �nding such code snippets depends on the program representation the

search is performed on.

Program Representations

Source code is usually stored in plain text �les (a �at sequence of characters). While this

simple representation makes storing and editing source code straight-forward, it isn’t

suitable for most static analyses. Plain text source code contains formatting information

(which isn’t of interest for the static analyses this thesis focuses on) and a lot of structure

(e.g. function scopes, operator precedence, . . . ) is encoded implicitly. Because programs are

inherently hierarchical, the semantics of a program are more naturally expressed by tree

data structures. For example, a class of a programming language could be represented as

an object that has an attribute method which contains a list of method objects. Compared

to plain text source code, properties like the number of methods of a class would be easier

to retrieve from a structure like that.

Compilers and interpreters typically use (often multiple of) such data structures while

preparing a program for execution. These data structures are known as Intermediate

Representations (IRs). Examples of IRs include parse trees and Abstract Syntax Trees

(ASTs).

Because most static analyses analyze the semantics of code rather than it’s encoding, they

work on IRs instead of the plain source text.

1.1. Problem Statement

A problem in writing static analyses is that it requires writing nested matching code that

becomes complex even for simple analyses. The example below shows a simpli�ed version

of the “collapsible_if” static analysis which is part of Rust’s static analysis tool Clippy [17].

The code above matches if expressions that contain only another if expression (where

both ifs don’t have an else branch). Even though the purpose of this static analysis can

easily be explained, its di�cult to tell that purpose from the code. The actual nesting can

be reduced using macros (e.g. if_chain [21]), this doesn’t reduce the inherent complexity

of the code.

Specifying static analyses this way is limiting in several ways. Because static analyses are

di�cult to write, a lot of programmers won’t be able to write them themselves. This results

in less static analyses being written and therefore a smaller scope and lower e�ectiveness

of static analysis tools. Additionally, the factor that writing static analyses is di�cult also

limits the complexity of static analyses. If writing static analyses was easier, writing more

3



1. Introduction

if let ast::ExprKind::If(check, then, None) = &expr.node {

if then.stmts.len() == 1 {

if let ast::StmtKind::Expr(inner)

| ast::StmtKind::Semi(inner) = &then.stmts[0].node {

if let ast::ExprKind::If(check2, then2, None) = &inner.node {

...

}

}

}

}

Figure 1.1.: Simpli�ed version of Clippy’s [17] “collapsible_if” static analysis.

advanced static analyses would become possible. Reading static analyses written this way

is di�cult as well which makes them more likely to contain bugs.

Another problem in writing static analyses that way is that analysis implementations are

language- and implementation-dependent. They are tightly coupled to a speci�c IR and

changes to that IR can break a lot of static analyses. Additionally, static analyses cannot

easily be ported to another IR that describes the same language.

The problems this thesis aims to solve are that

• Writing static analyses is di�cult and repetitive

• Static analyses are language- and implementation-dependent

1.2. Approach

A lot of complexity in writing static analyses comes from having to manually implement

the matching logic (see �gure 1.1). It’s an imperative style that describes how to match a

syntax tree node instead of specifying what should be matched against declaratively. In

other areas, it’s common to use declarative patterns to describe desired information and let

the implementation do the actual matching. A well-known example of this approach are

Regular Expressions (REs) [5] which are used to �nd certain character sequences within

strings. Instead of writing code that detects certain character sequences, one can describe

a search pattern using a Domain-Speci�c Language (DSL) [20] and search for matches

using that pattern. The advantage of using a declarative DSL is that its limited domain

(e.g. matching character sequences in the case of regular expressions) allows expressing

entities in that domain in a very natural and expressive way.

While regular expressions are very useful when searching for patterns in �at character

sequences, they cannot easily be applied to hierarchical data structures like syntax trees.

4



1.3. Related Work

The goal of this thesis is to design a DSL for specifying static analyses that operate on IRs.

The solution should have the following properties:

• Declarative: Static analyses should be speci�ed in terms of what to �nd instead of

how to �nd it.

• Language / Implementation independent: It should be possible to apply the so-

lution to di�erent programming languages and di�erent IRs that represent programs

in these programming language.

• Extensible: Since the DSL itself shouldn’t be able to handle all use cases itself,

it should be possible to handle these cases using a general-purpose programming

languages.

• Composible: The solution should provide mechanisms to reuse parts of speci�ca-

tions of static analyses in other static analyses.

• Usable: The solution should be as simple as possible and focus on supporting

common cases instead of all possible ones. It should also be easy to learn the DSL

(e.g. by re-using concepts known from other programming languages) and reading

and writing patterns in it should be easy as well.

1.3. RelatedWork

Static analysis tools exist for a number of di�erent programming languages. Examples

include Pylint [11] for Python, Clippy [17] for Rust and Lint [8] / Cppcheck [13] for C(++)

code. These tools usually specify static analyses directly against the respective AST data

structure (like shown previously in section 1.1) and are therefore both language- and

implementation speci�c.

The Rerast project [7] is a tool that allows specifying AST-based code transformation rules

for Rust programs. While the motivation of this project is di�erent than that of static

analysis tools, the required task remains similar. Rerast allows specifying search patterns

that are Rust code snippets that may contain additional placeholders. The implementation

provides a way to determine whether a search pattern matches some part of a code base.

While using and extending Rust language syntax has the advantage of being familiar

to Rust programmers, it also means that the concept cannot easily be applied to other

languages.

Another related project is Coccinelle [10] which is a C program transformation tool used

within the Linux kernel development process. Similar to Rerast, Coccinelle is language-

speci�c to a single programming language (C in this case).

5



1. Introduction

1.4. Outline of the Thesis

The rest of this thesis is structured in the following way: chapter two describes the concept

of the proposed solution. Following the conceptual description, chapter three presents an

implementation of the concept. The fourth chapter shows an evaluation of the concept

using the implementation presented before. The �fth and last chapter draws a conclusion

and presents possible future research opportunities.

6



2. Concept

2.1. Overview

Figure 2.1 shows an overview of the proposed concept. The central element is the Pat-
tern. A Pattern contains the information what to look for (e.g. “an addition that has no

e�ect”) and is speci�ed in a syntax (Pattern Syntax) inspired by RE. The Pattern Syntax is

language-independent which means that it can represent syntax tree patterns for di�erent

programming languages.

Patterns may use so-called Pattern Functions. A Pattern Function can take Pattern Syntax
as arguments and also expands to Pattern Syntax. Pattern Functions make composition of

patterns possible. Using them, redundant parts of a pattern can be replaced with function

calls that expand to the desired sub-patterns. Pattern Functions are de�ned in Pattern
Function Syntax.

A Pattern is de�ned in terms of a Pattern Tree. A Pattern Tree is a data structure that de�nes

the set of valid patterns for a certain language. Pattern Trees are language-dependent (a

Pattern Tree for the C++ programming language looks di�erent than one for Python) and

closely related to the AST of the language they’re designed for. Because a Pattern Tree
de�nes the set of possible patterns, a single Pattern can be seen as an instance of a certain

Pattern Tree Pattern Tree Syntax

Pattern SyntaxPatternIR instance

defined in

instance of

matched
against defined in

Pattern Functions

may use

Pattern Function Syntax
defined in

Figure 2.1.: Concept overview

7



2. Concept

Pattern Tree. Pattern Trees are de�ned in a custom syntax (Pattern Tree Syntax) similar to

grammar de�nitions like (E)BNF.

Patterns can be matched against IR instances (e.g. ASTs, Parse Trees). How to match IR
instances against Patterns created from a certain Pattern Tree needs to be implemented

manually. The concept contains general matching implementations (like matching se-

quences or alternatives of elements) which implementations can build upon. The same

Pattern can be matched against di�erent IR instances if matching implementations are

provided for those IRs.

This chapter is structured in the following way. The sections 2.2, 2.3 and 2.4 give an

overview of the Pattern, Pattern Function and Pattern Tree concepts. Section 2.5 presents

the compilation process of patterns and explains the semantics of the di�erent concepts

and their relationships in more detail. Section 2.6 describes how patterns can be matched

against IR instances.

2.2. Pattern

The following code snippet shows a simple example of a pattern:

my_pattern: Expr =

Lit(Bool(false))

Each pattern consists of three parts, a name, a type and the pattern’s body. The name

identi�es the pattern and is used to match it against syntax tree nodes. The type speci�es

the top-level node within the pattern. The pattern’s body speci�es which syntax tree

nodes the pattern matches. The syntax for these three parts is <name>: <type> = <body>.

In the example above, the pattern’s name is my_pattern, it’s type is Expr and it’s body is

Lit(Bool(false)).

The name of a pattern can be any valid identi�er in the implementation language. By

convention, patterns use lower-case identi�ers.

A pattern’s type can either be a single identi�er (e.g. Expr) or an identi�er wrapped in

a repetition type (e.g. Seq<Expr>). Valid repetition types are Seq<<inner_type>> for any

number of occurrences of inner_type and Opt<<inner_type>> for an optional occurrence

of inner_type.

The following sections explain the di�erent parts of the pattern syntax that can occur

in the pattern’s body by example. A table summarizing the pattern syntax is shown in

section 2.2.10. A formal de�nition of the pattern syntax is given in the appendix (section

A.2.1).

8



2.2. Pattern

2.2.1. Any

The simplest pattern is the any pattern. It matches a single occurrence of any node and is

therefore similar to RE’s . syntax.

The following example matches any expression:

my_pattern: Expr =
_

While the any pattern doesn’t make much sense on its own, it is useful in larger patterns

to denote that a part isn’t relevant and should be ignored.

2.2.2. Node

Nodes are used to match a speci�c variant of an AST node. A node has a name and a

number of arguments that depends on the node type. Node names are upper-case by

convention to make them distinct from function calls (see section 2.2.3).

The following pattern matches any expression that is a literal:

my_pattern: Expr =

Lit(_)

Nodes can contain other nodes as their arguments. The following pattern matches any

expression that is a boolean literal:

my_pattern: Expr =

Lit(Bool(_))

Nodes can have multiple arguments and nodes that don’t have any arguments are written

without parentheses. The pattern below matches integer literals that don’t have a su�x

(an integer with su�x could be 1000i32 instead of 1000).

my_pattern: Lit =

Int(_, Unsuffixed)

2.2.3. Function call

Function calls are similar to nodes. They also have a name and a number of arguments.

The syntactic di�erence is that function names are lower-case by convention while nodes

use upper-case names.
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The following pattern uses a function any_order(<a>, <b>). In this case, the function

could be de�ned to match both the sequence <a> <b> as well as <b> <a>. The de�nition

of functions is described in section 2.3.

my_pattern: Seq<Lit> =

any_order( Bool(_), Int(_, _) )

Function calls can also appear as arguments of nodes:

my_pattern: Expr =

Array( any_order( Bool(_), _) )

2.2.4. Literal

A pattern can also contain literals. The exact types and syntaxes of literals can be de�ned by

implementations as long as they’re not con�icting with other syntactic elements. Common

literals include �oating-point (1.234) and literal (123) numbers, characters ('c'), strings

("string") and booleans (true and false).

The following pattern matches the boolean literal false:

my_pattern: Expr =

Lit(Bool(false))

The pattern below matches the character literal x:

my_pattern: Expr =

Lit(Char('x'))

2.2.5. Alternative

Patterns can also contain alternatives. Similar to REs, alternatives are separated by a pipe

character (|).

The following pattern matches boolean and integer literals:

my_pattern: Lit =

Bool(_) | Int(_)

Alternatives can appear in node arguments as well. If there are more than two alternatives,

more cases can easily be added by separating them with pipe characters. The pattern

below matches character literals with a value of x, y or z.
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my_pattern: Expr =

Lit( Char('x' | 'y' | 'z') )

2.2.6. Empty

The empty pattern () can be used in places where a sequence of elements or an optional

element is expected. In case of a sequence, it represents the empty sequence. In case of an

optional element, it expresses that there’s no element.

The pattern below matches an empty array:

my_pattern: Expr =

Array( () )

The following pattern matches if expressions that don’t have an else clause:

my_pattern: Expr =

If( _, _, () )

2.2.7. Sequence

Sequences of elements can be expressed by simply writing them after each other.

The following example matches the array [true, false]:

my_pattern: Expr =

Array( Lit(Bool(true)) Lit(Bool(false)) )

Sequence elements can optionally be delimited using semicolons (;) to improve readability.

Trailing semicolons aren’t allowed. The pattern below is equivalent to the previous

example.

my_pattern: Expr =

Array(

Lit(Bool(true));

Lit(Bool(false))

)

2.2.8. Repetition

Elements my be repeated. The syntax for specifying repetitions is similar to REs. The

following table shows the supported syntax:
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Syntax Meaning

x* zero or more of x

x+ one or more of x

x? zero or one of x

x{n,m} at least n x and at most m x

x{n,} at least n x

x{n} exactly n x

The pattern below matches arrays that contain two xs as their last or second-last elements:

my_pattern: Expr =

Array( _* Lit(Char('x')){2} _? )

For example, this pattern would match ['x', 'x'], ['x', 'x', 'y'] and ['a', 'b',

'c', 'x', 'x', 'y'] but not ['x', 'x', 'y', 'z'].

One important aspect is that the repetition of elements defaults to one if not speci�ed

otherwise. For example, the pattern below matches all arrays that contain a single element:

my_pattern: Expr =

Array( _ )

A pattern that matches arrays of any length is written like this:

my_pattern: Expr =

Array( _* )

Similarly, the following pattern matches if expressions that may or may not have an else

block. Using ”_?” is equivalent to the pattern ”_ | ()”.

my_pattern: Expr =

If( _, _, _?)

The table below shows how optional elements are matched:

Pattern if with else block if witout else block

If(_, _, _) match no match

If(_, _, _?) match match

If(_, _, ()) no match match
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2.2.9. Named submatch

A lot of static analyses require checks that go beyond what the pattern syntax described in

the previous sections can express. For example, a static analysis might want to check for

variables with upper-case names or functions whose names are too long. Another example

would be a static analysis that wants to match two nodes that have the same value (as

needed by static analyses that check for shadowed variables).

Instead of allowing users to write these checks into the pattern directly (which would

make the pattern’s syntax more complex and patterns harder to read), the solution allows

to assign names to parts of a pattern expression. A sub-pattern can be named by appending

#<name> to it (where <name> is an identi�er).

The following pattern matches character literals and gives the character literal the name

“foo”:

my_pattern: Expr =

Lit( Char( _#foo ) )

Names can be given to di�erent parts of a pattern. The following pattern gives the character

literal, the literal and the expression part of the pattern the names ”foo”, ”bar” and ”baz”

respectively.

my_pattern: Expr =

Lit( Char( _#foo )#bar )#baz

Named submatches can be used with repetitions. In this case the repetition is written

before the named submatch. The following pattern matches arrays of length 5 and assigns

the name “bar” to the array’s elements.

my_pattern: Expr =

Array( _{5}#bar )

Named submatches can be used to get references to parts of an IR instance after it has

been matched (similar to IR’s named capturing groups). This feature is described in more

detail in section 2.5.3.

2.2.10. Summary

The following table shows a summary of the pattern syntax:
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Syntax Concept Examples

_ Any _

<node-name>(<args>) Node Lit(Bool(true)), If(_, _, _)

<func-name>(<args>) Function any_order(_, Bool(_))

<lit> Literal 'x', false, 101

<a> | <b> Alternative Char(_) | Bool(_)

() Empty Array( () )

<a> <b> Sequence Tuple( Lit(Bool(_)) Lit(Int(_)) Lit(_) )

<a>* Repetition Array( _* ),

<a>+ Block( Semi(_)+ ),

<a>? If(_, _, Block(_)?),

<a>{n} Array( Lit(_){10} ),

<a>{n,m} Lit(_){5,10},

<a>{n,} Lit(Bool(_)){10,}

<a>#<name> Named sub-

match

Lit(Int(_))#foo, Lit(Int(_#bar))

2.3. Pattern Functions

For complex patterns, it’s likely that similar subpatterns are used in di�erent places. These

repetitions can make patterns di�cult to read and maintain.

In the pattern shown below, there are two Block_(...) subpatterns that are identical.

Additionally, the subpattern (If(_, _, _?) | IfLet(_, _?))#else_block is repeated

twice within each of these blocks.

pat_if_else: Expr =

If(
_,
_,

Block_(

Block(

Expr( (If(_, _, _?) | IfLet(_, _?))#else_block ) |

Semi( (If(_, _, _?) | IfLet(_, _?))#else_block )

)#block_inner

)#block

) |

IfLet(
_,

Block_(

Block(

Expr( (If(_, _, _?) | IfLet(_, _?))#else_block ) |
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Semi( (If(_, _, _?) | IfLet(_, _?))#else_block )

)#block_inner

)#block

)

To avoid these kinds of repetitions, the concept includes so-called Pattern Functions. Pat-

tern Functions can take any number of arguments and expand to a pattern. By de�ning and

using two functions expr_or_semi and if_or_if_let, the pattern above can be simpli�ed

in the following way:

pat_if_else: Expr =

if_or_if_let(
_,

Block_(

Block(

expr_or_semi( if_or_if_let(_, _?)#else_block )

)#block_inner

)#block

)

The de�nitions of the functions used within the pattern above are shown below:

fn expr_or_semi($expr) {

Expr($expr) | Semi($expr)

}

fn if_or_if_let($then, $else_block) {

If(_, $then, $else_block) | IfLet($then, $else_block)

}

The syntax of Pattern Functions is similar to function syntax in c-like programming

languages. An informal description of the syntax is given below:

fn <function_name>(<args>) {

<body>

}

A pattern function consists of the function’s name, a list of arguments and the function

body. Function names are lower-case by convention. Function arguments are separated

by comma characters and each argument is an identi�er pre�xed by a dollar character.

The body of a Pattern Function can contain any characters.

Calls to Pattern Functions are expanded in a preprocessing step. A Pattern Function

expands to the characters of it’s body where all occurrences of parameters in the body are

replaced by the corresponding arguments passed to the function call. This is described in

more detail in section 2.5.1.
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2.4. Pattern Tree

A Pattern Tree is a data structure similar to an IR that is designed to represent search

patterns. The main di�erence between a Pattern Tree and an IR is that while an instance

of an IR represents one speci�c program, an instance of a Pattern Tree may represent a
class of programs.

For example, a pattern could match “if statements that have a boolean literal as their

condition”. For this pattern, it doesn’t matter whether the condition is true or false,

whether or not the if statement has an else branch or what statements the if statement’s

body contains. An IR instance would have to specify all values explicitly and couldn’t

express that multiple alternatives are possible.

A Pattern Tree consists of a set of node de�nitions. Each node de�nition can have multiple

variants that each can have multiple arguments. For example, the following code shows

an example of a node de�nition:

Lit = Bool(bool)

| Int(u128, LitIntType)

The code above de�nes a node Lit representing literals that has two variants. It can

either be a boolean literal (Bool) or an integer literal (Int). The Bool variant has a single

parameter which is a boolean primitive type, the Int variant has two parameters (a 128-bit

unsigned integer primitive type and a LitIntType type).

The syntax is described in more detail below. A formal speci�cation of the syntax can be

found in the appendix (section A.2.2).

2.4.1. Node definition

<node_name> = <variants>

A node de�nition starts with the node’s name, followed by an equals sign (=). Node names

are upper-case by convention. After the equals sign, a node de�nition may contain multiple

variants, delimited by pipe characters (|).

2.4.2. Node variant

<variant_name> or <variant_name>(<arguments>)
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A node variant has a name and optionally a list of arguments written in parentheses.

Multiple arguments are delimited by comma characters (,). Variants that don’t have any

arguments are written without parentheses. Variant names are CamelCase by convention.

2.4.3. Node argument

A node argument is an identi�er that may be followed by a repetition character and/or a

custom associated type. In the simplest case, a node argument is a single identi�er that

speci�es a type. A type can either be a primitive type provided by the implementation

(e.g. bool, int, char, . . . ) or another type de�ned in the same pattern tree.

The following node de�nition uses the char primitive type of the implementation language

in its Char variant:

Literal = Char(char)

The node de�nition below uses the Literal node type de�ned above:

Expr = Lit(Literal)

Type de�nitions can be recursive. The following example shows a variant BinOp that

represents binary operations and has two arguments that use the Expr type recursively:

Expr = BinOp(OpType, Expr, Expr)

Repetitions

By default, a node argument expects exactly one element. To allow multiple occurrences

of elements, the syntax allows appending a question mark character (?) or a star character

(*) to a node argument. A question mark character expresses that the argument is optional,

a star character that it’s a list of elements.

For example, the following node de�nition de�nes an Array variant that can have any

number of Exprs as it’s argument:

Expr = Array(Expr*)

The example below shows an If variant that has three arguments for the if expressions’s

condition, body and else clause. The condition is a single Expr node, the body a list of

Expr nodes and the else clause an optional Expr node. This If variant is a constructed

example that assumes that the else branch may only contain a single Expr. In a more

realistic implementation, one would use blocks instead of expressions in an if’s ”then”
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and ”else” branch. For the purpose of demonstrating the di�erent repetition types, the

de�nition below is useful though and will be used in various places in this thesis.

Expr = If(Expr, Expr*, Expr?)

Custom associated types

A node argument that uses a primitive type may specify a custom associated type for it.

This is done by appending angle brackets (<>) and the custom associated type’s name to

argument’s type. Custom associated type names are upper-case by convention.

The following example shows a node de�nition that uses a custom associated type Symbol

for the argument of the primitive type str:

Lit = Str(str<>Symbol)

Custom associated types are sometimes needed to correctly implement matching. For

more details, see section 2.5.3.1.

2.5. Compilation

In order to use a pattern, it needs to be compiled. More speci�cally, the compilation process

takes textual input of a pattern, a pattern tree and possibly multiple pattern functions as

input, performs various transformations and checks and emits code that can be executed.

Figure 2.2 shows the compilation pipeline. It consists of the following four steps:

• Parsing: Parses the textual input of the pattern, pattern tree and pattern functions

into ASTs.

• Type checking: Performs semantic analysis to ensure that types used within the

pattern are correct.

• Result type type inference: Determines the types of elements that should be

contained in a matching result structure.

Parsing Type checking Result type type
inference Code generation

Figure 2.2.: Compilation pipeline
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• Code generation: Uses the information acquired in the previous steps to generate

executable code in a target language.

The following sections describe the compilation steps in more detail.

2.5.1. Parsing

In the �rst compilation step, the textual inputs of the pattern tree and the pattern functions

are parsed into AST data structures separately. The exact construction of the parsers is up

to implementations, but since the grammars for the three languages are relatively simple,

writing parsers for them should be straight-forward. If any of the inputs don’t conform to

the speci�ed grammars, the compilation should be aborted.

In a second step, the pattern itself is parsed. Pattern function calls within the pattern are

expanded before the actual parsing is performed. The function expansion is described in

the next section.

Function Expansion

Usages of pattern functions within the pattern are expanded by scanning the pattern’s

source text for occurrences of pattern function names and expanding occurrences one

after the other.

A pattern function expands to the characters of it’s body where all occurrences of param-

eters in the body are replaced by the corresponding arguments passed to the function

call. If a pattern function is called with a wrong number of arguments, the compilation is

aborted.

The following example shows a pattern function any_order and a pattern my_pattern that

uses that pattern function:

fn any_order($a, $b){

($a $b) | ($b $a)

}

my_pattern: Expr =

Array(

any_order( Lit(Bool(true)), Lit(Bool(false)) )

)

The preprocessing step will detect the function call in the pattern and expand to the

following pattern (reformatted for better readability):
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my_pattern: Expr =

Array(

( Lit(Bool(true)) Lit(Bool(false)) ) |

( Lit(Bool(false)) Lit(Bool(true)) )

)

After each expansion step, the pattern is checked for remaining pattern function calls.

The pattern keeps expanding until it doesn’t contain pattern function calls anymore. This

allows writing pattern functions that expand to other pattern function calls as long as they

don’t form cycles.

The following example shows an example of a cycle where the pattern function infinite

expands to itself:

fn infinite($a){

infinite($a)

}

Implementations are expected to handle cycles by limiting the number of allowed expansion

steps. If the number of allowed expansions is exceeded, the compilation should be aborted.

After all pattern function calls are expanded, the pattern is parsed into an AST. Like for

the other parsers, the exact construction is up to implementations. Syntactic errors in the

pattern should abort the compilation.

If parsing is successful, the pattern’s and pattern tree’s AST are passed to the next com-

pilation step. Since function calls within the pattern are expanded already, the function

de�nitions aren’t needed for further analysis.

2.5.2. Semantic analysis

While the parsing step already ensured that the pattern and pattern tree de�nitions are

syntactically correct, the purpose of this compilation step is to ensure semantic correctness.

More speci�cally, the following checks are performed:

• Node / literal type checks: A node name within the pattern needs to be a variant

of the type speci�ed in the enclosing element.

• Repetition checks: Depending on the repetition type of the enclosing node, only

certain syntactic features are valid.

These checks are described in the following sections.

20



2.5. Compilation

2.5.2.1. Node / literal type checks

Only certain node names are allowed in each part of a pattern. The set of valid node

names always depends on the expected type. For the root level, this type is speci�ed in the

pattern de�nition. For nested nodes, the expected type is determined by the pattern tree

de�nition of the enclosing node. Types need to be either names of pattern tree de�nitions

(e.g. Expr and Lit) or names of primitive types the implementation provides. Node names

in the pattern need to be pattern tree variant names (e.g. Array or Char).

For example, consider the following pattern tree:

Expr = Lit(Lit)

| Array(Expr*)

| If(Expr, Expr*, Expr?)

Lit = Char(char)

| Bool(bool)

The patterns below have an expected type Expr, so nodes in their bodies need to be variants

of the pattern tree’s Expr node de�nition.

my_pattern: Expr =

Lit(_) | Array(_) // valid pattern

my_pattern_2: Expr =

Char(_) // error: no variant `Char` in `Expr` definition

If the pattern’s type (Expr in the example above) is not one of the pattern tree de�nition

names, the compilation is aborted.

Nodes in a pattern de�nition need to be used with the correct number of arguments (as

de�ned in the pattern tree). The compilation is aborted otherwise.

my_pattern: Expr =

Lit(_, _) // error: `Lit` expects 1 argument, 2 were given

The expected type for nested nodes depends on the enclosing nodes’ pattern tree de�nition.

The following pattern contains a Lit(...) node which is de�ned as having a single

parameter of type Lit (see pattern tree de�nition above). The argument of the Lit(...)

node is therefore expected to contain only nodes that name a variant of the Lit pattern

tree de�nition (Char or Bool).

my_pattern: Expr =

Lit(Char(_)) // valid pattern
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my_pattern_2: Expr =

Lit(Array(_)) // error: no variant `Array` in `Lit` definition

If the expected type is a primitive type, literals of that type may be used in the pattern.

Nodes cannot be used when a primitive type is expected. The exact syntax of literals is up

to implementations. The example below uses single quotes to express a character literal.

my_pattern: Expr =

Lit(Char('c')) // valid pattern

2.5.2.2. Repetition type checks

Expected types have one of three possible repetition types. The default repetition is “single”

(e.g. Expr). The other two repetition types are “optional” (Opt<type> in the pattern’s type

and type? in pattern tree de�nitions) and “sequence” (Seq<type> in the pattern’s type and

type* in pattern tree de�nitions).

Depending on the expected repetition type, only a subset of syntax may be used in a

pattern. The following table shows which syntactic concepts can be used depending on

the repetition type.

Syntax Single Optional Sequence

Any (_) x x x

Node (x) (x) (x)

Literal (x) (x) (x)

Alternative (<a> | <b>) x x x

Named submatch (<a>#<name>) x x x

Empty (()) - x x

Sequence (<a> <b>) - - x

Repetition (e.g. <a>*) - - x

Any, alternatives and named submatches can always be used. Whether or not nodes

and literals may be used depends on the expected type (see the previous section) and is

independent of the repetition type.

The empty syntax (()) may only be used when the expected repetition type is “optional”

or “sequence”.

my_pattern: Expr =

If(_, (), ()) // valid pattern

my_pattern_2: Expr =

Lit( () ) // error: Expected single element, found "empty"
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Sequences and repetitions may only be used when the expected repetition type is “se-

quence”.

my_pattern: Expr =

Array( Lit(_){3,5} Array(_*) ) // valid pattern

my_pattern_2: Expr =

Lit( Bool(_)* ) // error: Expected single element, found "repetition"

2.5.3. Result Type Type Inference

Matching a pattern against an IR instance produces a match result. A match result contains

whether the pattern matched the IR instance and if it did, it also contains references to

parts of the IR instance that were named in the pattern (see section 2.2.9).

For example, if the pattern Array(_#var1 Lit(Bool(_#var2))) was matched against an

AST node representing a two-element array containing true and false ([true, false]),

the match would be successful and return a structure containing two attributes (var1 and

var2). The var1 attribute would be a reference to the AST expression node that represents

the �rst array element. The var2 attribute would be a reference to a boolean node that

represents the second element.

The references in the result type are expected to be implemented as a data structure that

maps identi�ers to references. In statically typed languages, one would use struct- or

class-like constructs for this. Because the number and type of references depends on the

named submatches used in a pattern, they need to be determined during compilation. This

type inference of the result type is described in the following.

2.5.3.1. Match associated types

The type of each element in the result structure is a reference to an IR node. Named

submatches are used within a pattern and name pattern tree nodes. Therefore, it’s necessary

to provide a mapping from pattern tree node types to IR node types. This mapping needs

to be provided for each IR that should be matched against a pattern. A mapping needs to

provide an IR type for each type of the pattern tree. Primitive types are assumed to be

represented as themselves in the IR. For example, if a pattern tree contains a bool type, it is

assumed that the IR type this bool is matched against is also a bool. In addition to pattern

tree types, the mapping also needs to provide IR type mappings for all custom associated

types (see 2.4.3). These custom associated types allow to express that a primitive type

should be matched against another type. For example, this is needed when an IR uses

string interning as a performance optimization.
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2.5.3.2. Node type

Because the same pattern can be matched against di�erent IRs (e.g. against a languages’

parse- and abstract syntax tree), the exact types in the result structure can’t be known

while compiling the pattern. Instead, it is expected that any IR that is matched against

the pattern provides a type mapping (see previous section). Using this assumption, it’s

su�cient to express the types in the result structure in terms of the pattern tree types. For

each usage of the pattern, these types and the type mapping of the IR used allow to easily

determine the IR node types.

The type of a named submatch is determined “top-down”. Initially the type of the pattern

is used. If a named submatch is used within a node, it’s type is determined by the enclosing

node de�nition.

For example, consider the following pattern tree:

Expr = Lit(Lit)

| ...

Lit = Bool(bool)

| ...

The following pattern uses three named submatches #foo, #bar and #baz:

my_pattern: Expr =

Lit( Bool(_#foo)#bar ) | _#baz

The named submatches #foo and #bar appear within node de�nitions, the named submatch

#baz on the root level. The type of #baz is therefore the type of the pattern (Expr in this

case) and the types of the other named submatches are determined by the de�nitions of

their enclosing nodes. In this example, #foo would have the primitive type bool and #bar

the type Lit.

2.5.3.3. Multiple usages of the same named submatch

In some cases, it can make sense to use the same name in di�erent parts of a pattern.

For example, the following pattern matches literals and arrays that contain a single literal:

my_pattern: Expr =

Lit(_)#var | Array( Lit(_)#var )

Both the plain literal and the array containing the literal are named var. If the pattern

matches, the result will contain an element named var which is a reference to a literal
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IR node. Whether or not it was enclosed in an array doesn’t matter. If it did, the pattern

could have used di�erent names for the two literals.

The same name may be used multiple times if the named elements have the same node

type. In the example above, both named entries are literals. If two named submatches use

the same name but name di�erent types, the compilation is aborted.

The following pattern shows such an invalid pattern:

my_pattern: Expr =

Lit( _#var ) | _#var // error: multiple usages of `#var`

// need to have the same type

The �rst occurrence of #var is of type Lit while the second is of type Expr.

2.5.3.4. Repetition type

In addition to node types, elements of a result structure may also have a repetition type.

There are three repetition types: “single”, “optional” and “sequence”. “Optional” denotes

that there may or may not be an element and “sequence” denotes that there may be any

number of elements.

To obtain these repetition types, one could simply use the repetition types used in the

pattern’s type and the pattern tree de�nition’s types. The problem with this would be

that types in the pattern tree describe what’s possible where types in the result structure

should describe what’s actually used.

For example, consider the following pattern that matches arrays that have only one

element:

my_pattern: Expr =

Array( _#var )

The Array variant is de�ned as Array(Expr*) in the pattern tree, so the approach described

above would assign a “sequence” repetition type to the var element of the result structure.

Because of the actual pattern within the array node, it can be known at compile time that

there will only be a single element and the repetition type should therefore be “single”

instead.

As another example, the following pattern matches arrays that have at least one element:

my_pattern: Expr =

Array( _+#var )
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Syntax Repetition type

Any (_) “single”

Node “single”

Literal “single”

Empty (()) “optional”

Sequence (<a> <b>) “sequence”

Named submatch (<a>#<name>) rep. type of <a>

Repetition (e.g. <a>*) “optional” / “sequence”

Alternative (<a> | <b>) most general child rep. type

Table 2.5.: Repetition types of pattern syntactic elements

In this case, the named submatch may indeed contain multiple elements and therefore

needs to have the “sequence” repetition type.

The repetition type of a named submatch is determined in two steps. First, the children of

each named submatch are analyzed to determine the number of elements that the submatch

may contain. In the second step, the pattern is analyzed “bottom-up” to determine how

often named submatches may occur.

Step 1

The number of elements matched by a part of a pattern depends on the pattern concept

used. The repetition type of “Any”, “Nodes” and “Literals” is “single”. The repetition type of

“Empty” is “optional” and the repetition type of “Sequences” is “sequence”. The repetition

types of the other pattern concepts depends on their children elements and is described

below. A summary is shown in table 2.5.

Named submatch (<a>#<name>)

The repetition type of a named submatch equals the repetition type of its child <a>.

Repetition (e.g. <a>*)

If <a>’s repetition type is “single” or “optional” and the repetition itself is optional (e.g. <a>?),

the repetition type is “optional”. Otherwise, it’s “sequence”.

Alternative (<a> | <b>)

The repetition type of an alternative is the more general of its children’s repetition types.

If one children’s repetition type is “sequence”, it’s “sequence”. Otherwise, if one children’s

repetition type is “optional”, it’ “optional” and “single” otherwise.

Step 2
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Repetition (e.g. <a>*)

The repetition types of named submatches de�ned in subpattern <a> are adapted depending

on the repetition itself. If the repetition itself is optional (e.g. <a>?), all named submatches

with repetition type “single” get the repetition type “optional”, all others stay the same. If

the repetition itself is something else (e.g. <a>*), all named submatches get the repetition

type “sequence”.

Sequence (<a> <b>)

The named submatches of <a> and <b> are joined in the following way: all named sub-

matches that only exist in one of <a> and <b> are taken over into the result. Named

submatches that exist in both children need to have the same node type (see section 2.5.3.2)

and and are taken over into the result using the repetition type “sequence”.

Alternative (<a> | <b>)

Similar to sequences, all named submatches that only exist in one child are taken over

into the result. The only di�erence is that elements with repetition type “single” get the

repetition type “optional”. For named submatches that exist in both children, the repetition

type depends on the two named submatches’s types. If both types are “single”, the resulting

repetition type is “single” as well. If one of the types is “sequence”, the result is “sequence”

as well. Otherwise, the resulting repetition type is “optional”.

2.5.4. Code Generation

The last step of the compilation pipeline is the code generation step. The exact code

generation highly depends on the target language. It’d be possible to implement the

concept as a stand-alone programming language, but this would require re-implementing a

lot of functionality. Another option is to implement the concept as an internal / embedded

DSL which means that the code generation emits source code in a host programming

language.

2.6. Matching

Once a pattern is compiled successfully, it can be matched against IR instances. The

following sections describe how matching works in more detail.

As described in section 2.5.3.1, it’s necessary to provide a mapping from pattern tree node

types to IR node types. For each of these pairs of types, there needs to be speci�ed when

instances of these types match. Usually, this involves checking the variant type and then

matching all parameters.
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For example, let’s consider the following pattern tree:

Expr = Lit(Lit)

| Array(Expr*)

| If(Expr, Expr*, Expr?)

Lit = Char(char)

| Bool(bool)

Matching a Expr pattern tree node instance against an IR node instance could �rst check

if both instances use the same variant (e.g. that both represent a literal) and if that’s the

case match the variant’s arguments recursively (e.g. matching the literal pattern tree node

contained in the expression node against the literal IR node contained in the expression IR

node). Primitive types match by equality.

Besides nodes and primitive types, a pattern may also contain sequences, alternatives and

optional elements.

2.6.1. Alternative

When matching an alternative of two elements (<a> | <b>), <a> is matched �rst. If it

matches, the match is returned. If not, the second alternative (<b>) is matched and the

result of that match is returned.

2.6.2. Optional

Matching an optional element (<a>?) succeeds if the IR node matched against matches

either “empty” or <a>.

2.6.3. Sequence

Sequences of elements are matched against a sequence of IR instances. Repetitions of

elements (e.g. <a>{1,3}) match if the number of elements in the sequence of IR instances

is within the range speci�ed by the repetition (e.g. between one and three elements) and

all elements in the sequence of IR instances individually match the pattern (e.g. <a>).

Sequences are matched by trying all possible combinations of distributing the IR instances

among the pattern’s sequence elements. For example, matching the pattern sequence

Bool(true)* Bool(false)* against a sequence of three IR instances that are boolean true

values would check the following distributions:
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Bool(true)* Bool(false)*

[] [true, true, true]

[true] [true, true]

[true, true] [true]

[true, true, true] []

In the example above, the last combination matches.

2.6.4. Matching ambiguities

Using the concepts described above, it’s possible to describe patterns that are ambiguous.

For example, when matching the pattern Array( Lit(_)?#var _* ) against an IR that

represents [1, a, b], it’s ambiguous whether the literal 1 should be matched as part of

the Lit(_)? or the _* pattern. This di�erence is signi�cant because it changes which

elements will be part of the named submatch #var.

In ambiguous patterns, implementations may choose which alternative to use. This choice

has no impact on whether a pattern matches or not, but it may change the contents of

named submatches.
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As part of this thesis, a proof-of concept implementation was written in and for the Rust

programming language [9]. This chapter presents the implementation in detail.

The implementation described in this chapter is available online:

https://github.com/fkohlgrueber/pattern-matching/tree/thesis

This chapter is structured as follows: Section 3.1 brie�y describes the Rust programming

language and why it was chosen for the implementation. Afterwards, section 3.2 gives

an architectural overview of the implementation. Sections 3.3 - 3.8 describe important

aspects of the implementation in more detail.

3.1. Rust

The concept described in chapter 2 could have been implemented in most general-purpose

programming languages. The Rust programming language [9] was chosen for the imple-

mentation because some of its features and properties simplify the implementation. These

properties will brie�y be mentioned below.

Rust’s most important feature for implementing the concept are so-called procedural

macros [12] which allow writing Rust code that runs at compile-time and can transform

any input (e.g. pattern syntax) into any valid Rust code. Because of procedural macros,

the concept can entirely be implemented using built-in features of Rust. The advantage of

this is that it allows re-using a lot of Rust’s functionality. For example, one doesn’t have

to implement a custom build system and can use tools like Rust’s package distribution

system cargo [16] to share patterns or the Rust compiler itself to detect program errors.

While Rust’s procedural macros allow writing compilers within the language, doing so by

hand isn’t practical. Rust has an ecosystem of packages (called “crates”) that make certain

parts of the development easier. There’s the syn [4] and quote [3] crates which assist in

writing parsers and generating code respectively. Another useful tool is cargo expand [2]

which can be used to see the code generated by macro invocations. This information is

especially useful for debugging procedural macros.

Another useful feature of Rust are so-called algebraic data types. They allow representing

syntax trees naturally and Rust’s pattern matching makes working with them easy and
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expressive. In Rust, these types are called “enums“ but should not be confused with enums

known from languages like C or Java. The main di�erence is that each variant in a Rust

enum can have a number of attributes. [9]

The Rust ecosystem also provides a static analysis tool called Clippy [17] that can analyze

Rust code and report potential issues. Existing static analysis implementations in Clippy

can therefore be used as a baseline to evaluate the advantages the concept provides.

3.1.1. Procedural Macro Hygiene

Due to current limitations in the Rust programming language, procedural macros need

to be de�ned in a “proc-macro” crate. This special kind of crate only allows exporting

procedural macros and no other elements like functions or modules.

This becomes a problem when a procedural macro expands to code that uses other elements

(e.g. calls a function). Because the procedural macro crate isn’t allowed to export functions,

users of the macro are responsible to not only import the procedural macro, but also all

other elements the expanded macro might use. This is confusing for users and leads to

code that seems to import elements that aren’t used.

A solution to this is to use a second crate. This crate contains all elements the expanded

procedural macro might need and depends on the crate that de�nes the procedural macro.

The wrapping crate can then export all it’s elements and re-export the procedural macro.

This way, a user only needs to import the wrapping crate without having to know about

elements the expanded macro might use.

The implementation described below uses this pattern for all procedural macros it contains.

Crates whose names end with “-macro” contain the procedural macros and should not

be used directly. For each of these crates, there’s another crate with the same name

(but without the “-macro” su�x) that contains additional elements and re-exports the

procedural macro. These crates are meant to be used by other programs.

3.2. Project structure

Figure 3.1 shows the crates used by the implementation and the dependencies between

them. Pairs of crates that implement the procedural macro pattern described above are

marked in the same color. For simplicity, test crates (test, test-clippy and pattern-func-

lib) and the commons crate are not shown in the �gure. The full graph can be found in the

appendix (section A.1).

Each crate contains di�erent elements that are needed for the implementation to work

properly. The following list gives a short overview over the contents of each crate:
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pattern-tree-macro

pattern-macro-gen-macro

pattern-match

pattern-tree

pattern

pattern-macro

is-match-macro

pattern-macro-gen

pattern-func-macro

pattern-func

pattern-parse

IRs

Figure 3.1.: Project Structure

• pattern-tree-macro: De�nes the gen_pattern_tree!{...} macro

• pattern-tree: Hygienic wrapper around the pattern-tree-macro crate that also

contains the de�nitions of the Alt, Seq, Opt and RepeatRange structs

• pattern-parse: Contains the parser for the Pattern Syntax

• pattern-match: Contains the IsMatch, Reduce and ReduceSelf traits, generic match-

ing implementations for Alt, Seq and Opt, Pattern Trees for Rust and PatternSyntax

and concrete matching implementations for these PatternTrees.

• is-match-macro: De�nes the derive_is_match_impl! macro that can be used as a

shorthand for a pattern tree’s IsMatch implementation

• pattern-macro-gen-macro: De�nes the gen_pattern_macro!{...} macro that’s

used to de�ne pattern macros for speci�c pattern trees

• pattern-macro-gen: Hygienic wrapper around the pattern-macro-gen-macro crate

• pattern-macro: Uses the gen_pattern_macro!{...} to de�ne pattern macros for

speci�c pattern trees (e.g. pattern_rust!{...})

• pattern: Hygienic wrapper around the pattern-macro crate.

• pattern-func-macro: De�nes the pattern_func!{...} macro that can be used to

de�ne pattern functions
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• pattern-func: Hygienic wrapper around the pattern-func-macro crate

The next sections describe these elements in more detail.

3.3. Implementation aspects

The following sections describe speci�c relevant details of the implementation. Because

a full description of all implementation details is out of scope for this thesis, it focuses

on communicating the core ideas and implementation details. The rest of this chapter

contains the following sections:

• Pattern Tree: Describes the pattern tree implementation

• Pattern Matching: Describes how patterns are matched against IR instances

• Pattern Macro Gen: Describes how pattern macros are generated

• Patterns: Describes the implementation of patterns

• Pattern Functions: Describes how pattern functions are de�ned and expanded

3.4. Pattern Tree

The pattern-tree and pattern-tree-macro crates contain the gen_pattern_tree! macro

and various structs / enums used in pattern trees.

3.4.1. Repetition Types

Three types Alt, Seq and Opt are used within pattern trees to express how many elements

are expected at some place in a pattern tree. They are de�ned as Rust enums and their

de�nitions are given below:

The Alt enum can represent alternatives of elements, named elements and the special Any

variant:

pub enum Alt<'cx, 'o, T, Cx, O> {

Any,

Elmt(Box<T>),

Alt(Box<Self>, Box<Self>),
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Named(Box<Self>, Setter<'cx, 'o, Cx, O>)

}

The Opt enum additionally contains a None variant which expresses that no element is

expected:

pub enum Opt<'cx, 'o, T, Cx, O> {

Any, // anything, but not None

Elmt(Box<T>),

None,

Alt(Box<Self>, Box<Self>),

Named(Box<Self>, Setter<'cx, 'o, Cx, O>)

}

The Seq enum can also represent sequences and repetitions:

pub enum Seq<'cx, 'o, T, Cx, O> {

Any,

Empty,

Elmt(Box<T>),

Repeat(Box<Self>, RepeatRange),

Seq(Box<Self>, Box<Self>),

Alt(Box<Self>, Box<Self>),

Named(Box<Self>, Setter<'cx, 'o, Cx, O>)

}

Repetitions are represented by the RepeatRange type that is given below:

pub struct RepeatRange {

pub start: usize,

pub end: Option<usize> // exclusive

}

The end attribute of the RepeatRange is an optional unsigned integer. If the value of end

is None, the range is open. If a value is given for end, it marks the exclusive maximum

repetition count. For example, the end value of 10 means that the element may be repeated

at most 9 times.

The Named variants of the Alt, Seq and Opt enums contain a Setter type which is given

below:

type Setter<'cx, 'o, Cx, O> = fn(&'cx mut Cx, &'o O) -> &'cx mut Cx;

This setter type is a function that takes a context object Cx and an object O and returns a

context object. Both objects are passed by reference and use respective lifetimes 'cx for

Cx and 'o for O.
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These setter functions in the pattern tree are used to populate the result structure which

is described in more detail in section 3.7.1.

3.4.2. gen_pattern_tree!macro

The gen_pattern_tree! macro is used to create a pattern tree for a language. The macro

expects pattern tree syntax (see section 2.4) as input and expands to the following elements:

• An enum for each node de�nition in the input

• A TYPES hashmap that maps from variant names to the types of the variant’s param-

eters

• A variants module that is a namespace containing all variants of the pattern tree’s

enums

• A MatchAssociations trait that contains associated types for each pattern tree node

These elements are described in more detail below. As an example, consider the following

pattern tree de�nition:

use pattern_tree::gen_pattern_tree;

gen_pattern_tree!{

Expr = Lit(Lit)

| If(Expr, Expr*, Expr?)

Lit = Char(char)

| Bool(bool)

}

Pattern Tree enums

The macro call above expands to the following enums:

pub enum Expr<'cx, 'o, Cx, A>

where A: MatchAssociations<'o> {

Lit(Alt<'cx, 'o, Lit<'cx, 'o, Cx>, Cx, A::Lit>),

If(Alt<'cx, 'o, Expr<'cx, 'o, Cx, A>, Cx, A::Expr>,

Seq<'cx, 'o, Expr<'cx, 'o, Cx, A>, Cx, A::Expr>,

Opt<'cx, 'o, Expr<'cx, 'o, Cx, A>, Cx, A::Expr>),

}
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pub enum Lit<'cx, 'o, Cx> {

Char(Alt<'cx, 'o, char, Cx, char>),

Bool(Alt<'cx, 'o, bool, Cx, bool>),

}

For each pattern tree node de�nition in the input, an enum is created. Each of these enums

has a number of variants which correspond to the variants of the respective pattern tree

node de�nition. In the example above, the Expr enum contains two variants Lit and If.

Each enum variant can have a number of arguments. For each argument in the pattern

tree de�nition, an argument in the enum is created.

The type of an argument depends on the argument’s de�nition in the pattern tree. The

outer type is one of Alt<...>, Seq<...> and Opt<...> and depends on the repetition type

speci�ed in the pattern tree de�nition. The If variant of the Expr pattern tree node shows

the three repetition types. A “single” repetition type (e.g. Expr) leads to an Alt<...> type, a

“sequence repetition type (e.g. Expr*) leads to an Seq<...> type and an”optional" repetition

type (e.g. Expr?) leads to an Opt<...> type.

The three types Alt<...>, Seq<...> and Opt<...> each expect two lifetime parameters

and three type parameters. All usages of these types in pattern trees use 'cx and 'o as

lifetime parameters and Cx as the second type parameter. The �rst and third type parameter

depend on the argument’s de�nition in the pattern tree. The �rst type parameter describes

the inner type of the alternative / sequence / optional. For example, an inner type of

Lit<...> used within an Seq<...> could be read as “a sequence of literals”. These inner

types form the tree structure of the pattern tree. The third type parameter describes the

type of elements that are expected to be matched against the inner type. These types are

either IR nodes or primitive types.

If an argument in the pattern tree de�nition is a pattern tree node (e.g. Lit or Expr

in the Expr node de�nition), the �rst type parameter (inner type) is the corresponding

pattern tree enum (e.g. Lit<...> or Expr<...>). Lifetime and type parameters are inserted

appropriately. The third parameter is an associated type of the generic parameter A. The

name of the associated parameter is identical to the inner type (e.g. an inner type of

Expr<...> leads to the associated type A::Expr). Using a generic parameter A allows

matching the same pattern tree against di�erent IRs.

If an argument in the pattern tree de�nition is a primitive type (e.g. the char and bool

arguments in the Lit node de�nition), both the inner and the associated type are identical

to the primitive type. As described in section 2.5.3.1, primitive types are matched against

themselves. The only exception to this are custom associated types (see section 2.4.3 in

the concept). When using a custom associated type (e.g. bool<>MyBool) in an argument in

the pattern tree de�nition, the associated type of that argument is an associated type of

the generic type A (e.g. A::MyBool).
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TYPES struct

An invocation of the gen_pattern_tree!{...} macro also generates a TYPES hashmap. In

the example above, the following hashmap is generated.

lazy_static! {

pub static ref TYPES: rustc_data_structures::fx::FxHashMap<

&'static str, Vec<(&'static str, Ty)>

> = {

let mut p = rustc_data_structures::fx::FxHashMap::default();

p.insert("Lit", vec![("Lit", Ty::Alt)]);

p.insert("If", vec![("Expr", Ty::Alt),

("Expr", Ty::Seq),

("Expr", Ty::Opt)]);

p.insert("Char", vec![("char", Ty::Alt)]);

p.insert("Bool", vec![("bool", Ty::Alt)]);

};

}

The implementation uses the lazy_static!{...} macro [18] that allows specifying static

types that support allocation. Using the lazy_static!{...} macro is currently necessary

due to a limitation of the Rust compiler’s const evaluator but won’t be required in future

language versions. The static type is a hashmap that maps from variant names to lists

of argument types. For example, the Lit variant of the Expr node de�nition has a single

argument which is a single node of type Lit. In the TYPES hashmap this is represented as a

mapping from the string "Lit" to a vector containing a single element ("Lit", Ty::Alt).

Types are represented as two-tuples where the �rst element is the inner type and the

second element is the repetition type.

The TYPES hashmap is needed during the compilation of patterns. During type checking,

the pattern compilation needs to know the types of elements expected as children of

certain pattern tree nodes. This information is contained in the TYPES hashmap.

variants namespace

In addition to previous elements, the gen_pattern_tree!{...} macro also generates a

namespace that contains all variants of the pattern tree’s nodes. This namespace is

implemented as a public module variants that publicly uses all variants of all de�ned

pattern tree enums. In the example above, the following module is created:

pub mod variants {

pub use super::Expr::*;

pub use super::Lit::*;

}
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The variants namespace is used in the compilation of a pattern. During code generation,

the node names used in the pattern are prepended by the variants namespce. This works

because node names in a pattern refer to a variant in a pattern tree, not a pattern tree type.

Using Lit(...) in a pattern refers to the Lit variant of the Expr pattern tree node, not

the Lit pattern tree node.

MatchAssociations trait

An invocation of the gen_pattern_tree!{...} macro also generates a trait named Match-

Associations. For each node in the pattern tree (and each custom associated type), this

trait contains an associated type. In the example above, the following trait is generated:

pub trait MatchAssociations<'o>

where

Self: Sized + Clone,

{

type Expr: 'o + std::fmt::Debug + Clone;

type Lit: 'o + std::fmt::Debug + Clone;

}

The purpose of this trait is to allow IRs to specify which of their types should be matched

against which pattern tree nodes.

3.5. Pattern Matching

The pattern-match crate contains

• the IsMatch, IsMatchEquality, Reduce and ReduceSelf traits

• generic matching implementations for the Seq, Alt and Opt types

• the pattern tree de�nitions for (partial) Rust and the PatternSyntax

• matching implementations for these two pattern trees, consisting of:

– MatchAssociations implementation

– matching implementations for

∗ syntax::ast,

∗ dummyAst and

∗ pattern parse tree

These elements are presented in the following sections.
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3.5.1. IsMatch trait

The IsMatch trait is used to specify how a pattern tree node is matched against an IR node.

The de�nition of the trait is given below:

pub trait IsMatch<'cx, 'o, Cx: Clone, O: ?Sized> {

fn is_match(&self, cx: &'cx mut Cx, other: &'o O) -> (bool, &'cx mut Cx);

}

The trait is expected to be implemented on pattern tree nodes. It contains a single method

is_match that takes a mutable reference to a context object Cx and a reference to an IR

node O as parameters. The method returns a two-tuple that contains whether or not the

match was successful as its �rst element and contains a mutable reference to the context

object as second element. Returning a reference to the context element solves a certain

lifetime problem which is explained in more detail in the appendix (section A.6).

The context object is an object that can contain references to IR nodes. When a pattern

tree node contains a named submatch, the is_match implementation can store a reference

to the corresponding IR node in the context object. Context objects are described in more

detail in section 3.7.1.

For primitive types, the implementations of the IsMatch trait are trivial. Primitive types

are matched against themselves and match if they are equal. As a shortcut for these cases,

the pattern-match crate contains the IsMatchEquality marker trait that depends on the

PartialEq trait:

pub trait IsMatchEquality: PartialEq {}

The crate also provides a generic IsMatch trait implementation for all types that implement

IsMatchEquality:

impl<'cx, 'o, Cx: Clone, T> IsMatch<'cx, 'o, Cx, T> for T

where T: IsMatchEquality {

fn is_match(&self, cx: &'cx mut Cx, other: &Self) -> (bool, &'cx mut Cx) {

(self == other, cx)

}

}

The implementation above simply returns whether or not the pattern tree element (self)

and the IR element (other) are equal. Additionally, it also returns the context object passed

to it without modifying it.

The crate contains implementations of IsMatchEquality for the following primitive types:

impl IsMatchEquality for u128 {}

impl IsMatchEquality for char {}
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impl IsMatchEquality for bool {}

impl IsMatchEquality for &'static str {}

3.5.2. Reduce trait

IRs often contain indirections between nodes (e.g. references, boxes, . . . ). To make resolving

these indirections easier, the pattern-match crate contains the Reduce trait:

pub trait Reduce {

type Target;

fn reduce(&self) -> &Self::Target;

}

The trait is supposed to be implemented on indirection types used in IRs. The trait contains

a single function reduce that takes a reference to an indirection type as its argument and

returns a reference to the trait’s Target associated type.

The following example shows an implementation of the Reduce trait for syntax::ptr::P

types:

impl<T> Reduce for syntax::ptr::P<T> {

type Target = T;

fn reduce(&self) -> &Self::Target {

&*self

}

}

This implementation converts from syntax::ptr::P<T> to &T.

The Reduce trait is used in the generic matching implementation for sequences and op-

tionals (see section 3.5.3) and allows them to be generic over any kind of indirection.

For types that don’t contain indirections, the crate provides a ReduceSelf marker trait.

Types that implement this trait get a reduce function that simply returns the instance

without performing any conversions:

pub trait ReduceSelf {}

impl<T> Reduce for T

where T: ReduceSelf {

type Target = Self;
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fn reduce(&self) -> &Self::Target {

self

}

}

3.5.3. Generic Matching Implementations

The pattern-match crate also includes generic matching implementations for the Alt<...>,

Seq<...> and Opt<...> types (see section 3.4.1). These implementations are described in

the following sections.

Alt

The generic is_match implementation of Alt<...> types is given below:

impl<'cx, 'o, T, U, Cx: Clone> IsMatch<'cx, 'o, Cx, U>

for Alt<'cx, 'o, T, Cx, U>

where T: IsMatch<'cx, 'o, Cx, U> {

fn is_match(&self, cx: &'cx mut Cx, other: &'o U)

-> (bool, &'cx mut Cx) {

match self {

Alt::Any => (true, cx),

Alt::Elmt(e) => e.is_match(cx, other),

Alt::Named(e, f) => {

let (r, mut cx) = e.is_match(cx, other);

if r {

cx = f(cx, other);

}

(r, cx)

},

Alt::Alt(i, j) => {

let (r_i, cx) = i.is_match(cx, other);

// early return if first alternative matched

if r_i {

return (r_i, cx);

}

j.is_match(cx, other)

}

}

}

}
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The implementation above is generic over three types T, U and Cx. The type parameter

T is the inner type of the alternative (e.g. a pattern tree node). The type parameter

U represents the type that T should be compared against (e.g. an IR node). The type

parameter Cx represents the context object. The implementation contains a trait bound for

T that enforces that T needs to be able to be matched against U (which means it needs to

implement IsMatch<..., U>).

The exact matching logic depends on the variant of the Alt enum. If the variant is Any,

the match returns true. In case of the Elmt variant, the alternative matches if the inner

element e matches. The Named variant works similar. The only di�erence is that if the inner

element e matches, the function f that sets a reference in the context object is executed.

In case of the Alt variant, the �rst alternative i is matched �rst. If it matches, the result is

returned. If it doesn’t match, the second alternative j is matched and the result is returned.

Opt

The generic is_match implementation of Opt<...> types is similar to the implementation

of Alt<...> types. The following code snippet shows the signature of the implementation:

impl<'cx, 'o, T, U, V, Cx: Clone> IsMatch<'cx, 'o, Cx, Option<V>>

for Opt<'cx, 'o, T, Cx, U>

where

T: IsMatch<'cx, 'o, Cx, U>,

V: Reduce<Target=U>

{

fn is_match(&self, cx: &'cx mut Cx, other: &'o Option<V>)

-> (bool, &'cx mut Cx) {

...

}

}

In addition to the generic type parameters that Alt<...> has, the implementation of

Opt<...> also contains another parameter V. This type needs to be reducible to to the

type U (which means that it implements Reduce<Target=U>). Also, the implementation of

Opt<...> uses Option<V> instead of U as the type of other. This means that Opt<...> is

matched against an optional type whose inner type can be reduced to an IR node.

The implementation of the actual matching code is similar to Alt<...> and can be found

in the appendix (see section A.3.2).
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Seq

The generic is_match implementation of Seq<...> types is also similar to the imple-

mentations described above. The following code snippet shows the signature of the

implementation:

impl<'cx, 'o, T, U, V, Cx: Clone> IsMatch<'cx, 'o, Cx, [V]>

for Seq<'cx, 'o, T, Cx, U>

where

T: IsMatch<'cx, 'o, Cx, U>,

V: Reduce<Target=U>

{

fn is_match(&self, cx: &'cx mut Cx, other: &'o [V])

-> (bool, &'cx mut Cx) {

...

}

}

The generic type parameters are identical to those of the Opt<...> implementation. The

Seq<...> implementation uses a slice of Vs ([V]) as its type for other because a sequence

of pattern tree nodes should be matched against a sequence of IR nodes.

The actual matching implementation of sequences is similar to Alt<...>. Additionally, it

also contains matching of repetitions and sequences. The actual implementation can be

found in the appendix (see section A.3.1).

3.5.4. Pattern Tree Definitions

The pattern-match crate also contains pattern tree de�nitions for two languages.

The �rst pattern tree de�nition supports a subset of the Rust programming language and is

implemented in the module pattern_tree_rust. The pattern tree de�nition can be found

in the appendix (section A.4.1) as well.

The second pattern tree de�nition is a pattern tree that represents pattern syntax. It is

implemented in the module pattern_tree_meta and can also be found in the appendix

(section A.4.2). This pattern tree allows writing static analyses that analyze the source

code of patterns. This is described in more detail in the evaluation (chapter 4).
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3.5.5. Matching Implementations for Pattern Trees

Each pattern tree can potentially be matched against multiple di�erent IRs. For each IR,

the following has to be implemented:

• A new type that implements the MatchAssotiations trait of the pattern tree

• IsMatch implementations for each node of the pattern tree and the corresponding

node in the IR

The implementation currently contains two matching implementations for the Rust pattern

tree and a single matching implementation for the “meta” pattern tree. For the Rust pattern

tree, the implementation provides matching implementations for the Rust compiler’s

syntax::ast IR [14] and a synthetic IR called DummyAST (which is de�ned in the module

dummy_ast_match). For the “meta” pattern tree, the implementation provides matching

implementations for the pattern’s parse tree data structure (which is de�ned in the crate

pattern-parse).

In the following, the Rust pattern tree matching implementation for syntax::ast is de-

scribed in more detail. Other matching implementations work similarly.

Type that implements MatchAssociations

The matching implementation de�nes a new type Ast and implements the pattern tree’s

MatchAssociations trait (see section 3.4.2) for that type:

pub struct Ast {}

impl<'o> MatchAssociations<'o> for Ast {

type Expr = ast::Expr;

type Lit = ast::Lit;

type Stmt = ast::Stmt;

type BlockType = ast::Block;

type LitIntType = ast::LitIntType;

type IntTy = ast::IntTy;

type UintTy = ast::UintTy;

type Symbol = syntax::source_map::symbol::Symbol;

}

Implementing the MatchAssociations trait requires specifying which IR nodes are matched

against which pattern tree nodes.
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IsMatch implementations

For each pair of pattern tree- and IR types speci�ed in the MatchAssociations imple-

mentation, an implementation of IsMatch needs to be provided. The IsMatch trait needs

to be implemented for the pattern tree type (e.g. Expr) and needs to use the IR type

(e.g. ast::Expr) for the trait’s type parameter T.

Because pattern tree nodes are enums and most IR nodes are enums as well, most IsMatch

implementations will be matches over the variants of those two types. The following code

snippet shows a simpli�ed version of the IsMatch implementation for Expr and ast::Expr.

The full implementation can be found in the appendix (see section A.5).

impl<'cx, 'o, Cx: Clone> IsMatch<'cx, 'o, Cx, ast::ExprKind>

for Expr<'cx, 'o, Cx, Ast> {

fn is_match(&self, cx: &'cx mut Cx, other: &'o ast::ExprKind)

-> (bool, &'cx mut Cx) {

match (self, other) {

// Expr::Lit

(Expr::Lit(l_a), ast::ExprKind::Lit(l_b))

=> l_a.is_match(cx, l_b),

(Expr::Lit(l_a), _) => (false, cx),

// Expr::If

(Expr::If(check_a, then_a, else__a),

ast::ExprKind::If(check_b, then_b, else__b)) => {

let cx_orig = cx.clone();

let (r, cx) = check_a.is_match(cx, check_b);

if !r {

*cx = cx_orig;

return (false, cx);

}

let (r, cx) = then_a.is_match(cx, then_b);

if !r {

*cx = cx_orig;

return (false, cx);

}

let (r, cx) = else__a.is_match(cx, else__b);

if !r {

*cx = cx_orig;

return (false, cx);

}

(true, cx)

},

(Expr::If(check_a, then_a, else__a), _) => (false, cx),

}
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}

}

For each variant in the pattern tree node, the match statement contains two variants. The

�rst variant matches against the correct variant of the IR node and then matches the nodes’

children recursively. The second variant matches all other IR node variants and returns a

negative result.

Instead of using a second variant for each pattern tree variant, the implementation could

have also used a default variant (_ => (false, cx)) at the end of the match statement.

The advantage of the chosen approach is that match variants need to be de�ned for

each pattern tree node variant. When adding a new variant to a pattern tree node, the

IsMatch implementation described above won’t compile until additional match variants

are implemented. Using a default variant wouldn’t trigger a compilation error and would

incorrectly always return false for the newly added pattern tree node variant.

For variants that have multiple parameters (see If in the implementation above), the

implementation will usually require that all pairs of parameters match. In this case, the

implementation needs to ensure that the context object is processed correctly. Calling

is_match on children may mutate the context object (e.g. when a child is a named submatch,

a reference to an IR node will be added to the context object). It is important that the

context object is only mutated by nodes that actually match. In the case of multiple

parameters, if the �rst pair of parameters matched but the second pair doesn’t (e.g. when

an if’s condition matches but it’s body doesn’t), the implementation needs to return a

context object that hasn’t been mutated by the �rst successful matching call (e.g. the

if’s condition). The implementation accounts for this by cloning the initial context (see

cx_orig) and restores it if any of the parameters don’t match.

Another type of IsMatch implementations needs to be implemented when an IR node is a

struct that contains an enum as one of it’s attributes. An example of this is the ast::Lit

struct [15] that has a ast::LitKind enum as one of its attributes. In this case, an IsMatch

implementation can simply forward the is_match call to the inner enum. An example of

this is shown below:

impl<'cx, 'o, Cx: Clone> IsMatch<'cx, 'o, Cx, ast::Expr>

for Expr<'cx, 'o, Cx, Ast> {

fn is_match(&self, cx: &'cx mut Cx, other: &'o ast::Expr)

-> (bool, &'cx mut Cx) {

self.is_match(cx, &other.node)

}

}

Because matching implementations of pattern tree nodes against IR enums are tedious

to write by hand, the is-match-macro crate contains the derive_is_match_impl!{...}

macro which simpli�es the speci�cation of these matching implementations.
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The following code snippet shows the complete speci�cation of the matching implementa-

tion for Expr and syntax::ExprKind:

derive_is_match_impl!{

Expr <> ast::ExprKind => Ast => {

Lit(l) <> Lit(l)

Block_(b) <> Block(b, _label)

Array(a) <> Array(a)

If(check, then, else_) <> If(check, then, else_)

IfLet(then, else_) <> IfLet(_pattern, _check, then, else_)

}

}

The derive_is_match_impl!{...} macro expands to the trait implementation shown in

the appendix A.5.

The �rst line of the speci�cation expresses which types are compared against each other

(Expr and ast::ExprKind in the example above). These two types are separated by angle

brackets (<>) and followed by an arrow (=>). For pattern tree types that depend on a type

that implements MatchAssociations, this type needs to be speci�ed afterwards and is

followed by an arrow (=>) too. Simple enums like IntTy and UintTy in the Rust pattern

tree (see section A.4.1) don’t depend on such a type and can omit it. The arrow is followed

by curly brackets {...} that contain the speci�cation’s body.

Each line of the speci�cation’s body compares a variant of a pattern tree node against a

variant of an IR node. The speci�cation needs to provide the correct number of arguments

for each variant. Using the same identi�er in both variant argument lists means that these

parameters need to be matched recursively (e.g. the l parameter in the Lit line). Identi�ers

that appear on one side only (e.g. _label in the Block line) are ignored.

3.6. Pattern Macro Gen

The pattern-macro-gen and pattern-macro-gen-macro crates de�ne and export the

gen_pattern_macro! macro. The following example shows a usage of the macro:

use pattern_match;

gen_pattern_macro!{

pattern => pattern_match::pattern_tree_rust

}

The macro expects an identi�er (pattern in the example above) and a module

(pattern_tree_rust in the example above) separated by an arrow (=>) as input.
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The gen_pattern_macro! expands to an actual pattern macro. In the example above, this

creates a new macro pattern! that uses the pattern tree de�ned in the pattern_tree_rust

module. The macros the gen_pattern_macro! expands to are described in more detail in

the following section.

3.7. Patterns

The pattern-macro and pattern crates use the gen_pattern_macro! macro to generate

pattern macros. In the current implementation, they contain the two macros pattern!

and meta_pattern!. The pattern! macro creates patterns for the Rust pattern tree. The

meta_pattern! macro creates patterns for the parse tree of the pattern syntax.

The pattern! and meta_pattern! macros expect a pattern as their input (see section 2.2).

The following code shows a simple usage of the pattern! macro:

pattern!{

my_pattern: Expr =
_

}

Pattern macros expand to the following elements:

• a temporary and a �nal result struct

• an initialization function for the temporary struct

• a conversion function from temporary to �nal structs

• a function that can be used to match IR nodes

These elements are described in more detail below.

3.7.1. Result structs

Two structs are created during the expansion of a pattern macro. The pattern above

expands to the following result structs:

#[derive(Debug, Clone)]

struct my_patternTmpStruct<'o, A>

where A: pattern_tree_rust::MatchAssociations<'o> {

root: Option<&'o A::Expr>

}

#[derive(Debug, Clone)]

pub struct my_patternStruct<'o, A>
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where A: pattern_tree_rust::MatchAssociations<'o> {

pub root: &'o A::Expr

}

Result structs always contain an attribute root which is a reference to the IR node matched

against the whole pattern. Additionally, the result structs also contain attributes for all

named submatches that are used within the pattern.

The di�erence between the temporary and �nal result struct is that IR node references

are wrapped in an Option<...> type in the temporary struct. This allows the temporary

struct to be initialized without providing values for its attributes. The generated pattern

function (see section 3.7.2) uses this to create an “empty” result struct �rst and then add

references to it gradually.

The initialization function that’s generated for the temporary struct above is given below:

impl<'o, A> my_patternTmpStruct<'o, A>

where A: pattern_tree_rust::MatchAssociations<'o> {

fn new() -> my_patternTmpStruct<'o, A> {

my_patternTmpStruct { root: None }

}

}

The macro also generates a function that converts a temporary struct to a �nal one. This is

done by unwrapping Option<...> types. The implementation generated for the example

pattern above is given below:

impl<'o, A> From<my_patternTmpStruct<'o, A>> for my_patternStruct<'o, A>

where A: pattern_tree_rust::MatchAssociations<'o> {

fn from(cx: my_patternTmpStruct<'o, A>) -> Self {

my_patternStruct {

root: cx.root.unwrap()

}

}

}

3.7.2. Pattern Function

A pattern macro also expands to a function that takes a reference to an IR node as its

argument and returns an optional result struct. The function de�nition generated for the

pattern given above is shown below:

fn my_pattern<'o, A, P>(node: &'o P) -> Option<my_patternStruct<'o, A>>

where
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A: pattern_tree_rust::MatchAssociations<'o, Expr = P>,

P: std::fmt::Debug + std::clone::Clone,

for<'cx> Expr<'cx, 'o, my_patternTmpStruct<'o, A>, A>:

IsMatch<'cx, 'o, my_patternTmpStruct<'o, A>, P>

{

Within the function, an instance of a pattern tree that represents the pattern is created

�rst:

// initialize the pattern

let pattern: pattern::matchers::Alt<

'_,

'_,

Expr<'_, '_, my_patternTmpStruct<A>, A>,

my_patternTmpStruct<A>,

A::Expr

> = pattern::matchers::Alt::Named(

Box::new(pattern::matchers::Alt::Any),

|cx, elmt| {

cx.root = Some(elmt);

cx

}

);

Next, an empty instance of the temporary result struct is created (cx):

// initialize the (temporary) result struct

let mut cx = my_patternTmpStruct::new();

The actual matching is done by calling the is_match function on the pattern instance.

The is_match call receives the temporary result struct instance as its context object and

the IR instance (node) as its arguments. The call returns whether or not the match was

successful (r) and the mutated temporary result struct instance (cx_out):

// match input node against pattern

let (r, cx_out) = pattern.is_match(&mut cx, node);

If the match was successful, the temporary result struct is converted into a �nal result

struct and returned. Otherwise, None is returned:

if r {

// convert cx to final result struct and return

Some(cx_out.into())

} else {

None
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}

}

3.8. Pattern Functions

The pattern-func and pattern-func-lib crates contain the pattern_func! macro that

can be used to declare pattern functions. The following code snippet shows how the

pattern_func! macro can be used:

pattern_func!{

fn expr_or_semi($expr) {

Expr($expr) | Semi($expr)

}

}

The pattern_func! macro expects a pattern function de�nition (see section 2.3) as its

input and expands to a pattern function macro. The example above expands to a macro

expr_or_semi! whose signature is shown below:

#[proc_macro]

pub fn expr_or_semi(input: TokenStream) -> TokenStream {

...

}

Pattern function macros like expr_or_semi! above expect a single identi�er that names

a pattern macro and a pattern de�nition as input. A pattern macro expands to a macro

call to the pattern macro given in its input. The input of this macro call is the pattern

de�nition where occurrences of the pattern function are resolved.

Pattern function macros aren’t supposed to be called directly. Instead, they should be used

within patterns. If a pattern macro detects that it contains a function call, it expands to a

macro call of that pattern function. The pattern function then textually replaces instances

of that function call with the result of the function call. Afterwards, it again expands to a

call to the original pattern macro. The following example shows the macro call chain:

This is the original pattern:

pattern!{

my_pattern: Stmt =

expr_or_semi(Lit(_))

}

pattern! macro detects that it contains a function call, so it expands to the function call

expr_or_semi! and appends it’s own name (pattern) to the front of the original input:
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expr_or_semi!{

pattern

my_pattern: Stmt =

expr_or_semi(Lit(_))

}

The expr_or_semi! macro resolves the function call (thereby duplicating the Lit(_)

expression) and expands to a call to the original pattern! macro:

pattern!{

my_pattern: Stmt =

Expr(Lit(_)) | Semi(Lit(_)))

}

The pattern doesn’t contain function calls anymore and can be processed as described in

previous sections.
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The concept was evaluated in three parts. First, an existing static analysis of Rust’s static

analysis tool Clippy [17] was rewritten using the concept. The concept was also used to

write “meta” static analyses that analyze the source code of patterns themselves. Finally,

the concept was presented to domain experts for review. These evaluations are presented

in more detail in the following sections.

4.1. Collapsible-if static analysis

To evaluate the concept, Clippy’s [17] collapsible-if static analysis was rewritten using

with patterns. The collapsible-if static analysis detects nested if or if let statements

that can be collapsed.

For example, the following code snippet contains two nested if statements:

if x == "Hello" {

if y == "World" {

println!("Hello world!");

}

}

The code snippet above could be rewritten as a single if statement:

if x == "Hello" && y == "World" {

println!("Hello world!");

}

4.1.1. Baseline implementation

The implementation of collapsible-if as of February 28, 2019 was used as the baseline

of the evaluation. It is available online using the following link:

https://github.com/fkohlgrueber/rust-clippy-pattern/blob/

f69ec96906d300132ffd33151bf6641b950db96d/clippy_lints/src/collapsible_if.rs
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The relevant parts of the implementation are shown below:

impl EarlyLintPass for CollapsibleIf {

fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {

if !in_macro(expr.span) {

check_if(cx, expr)

}

}

}

fn check_if(cx: &EarlyContext<'_>, expr: &ast::Expr) {

match expr.node {

ast::ExprKind::If(ref check, ref then, ref else_) => {

if let Some(ref else_) = *else_ {

check_collapsible_maybe_if_let(cx, else_);

} else {

check_collapsible_no_if_let(cx, expr, check, then);

}

},

ast::ExprKind::IfLet(_, _, _, Some(ref else_)) => {

check_collapsible_maybe_if_let(cx, else_);

},
_ => (),

}

}

fn check_collapsible_maybe_if_let(

cx: &EarlyContext<'_>,

else_: &ast::Expr

) {

if_chain! {

if let ast::ExprKind::Block(ref block, _) = else_.node;

if !block_starts_with_comment(cx, block);

if let Some(else_) = expr_block(block);

if !in_macro(else_.span);

then {

match else_.node {

ast::ExprKind::If(..) | ast::ExprKind::IfLet(..) => {

// Report finding...

}
_ => (),

}

}

}

}

56



4.1. Collapsible-if static analysis

fn check_collapsible_no_if_let(

cx: &EarlyContext<'_>,

expr: &ast::Expr,

check: &ast::Expr,

then: &ast::Block

) {

if_chain! {

if !block_starts_with_comment(cx, then);

if let Some(inner) = expr_block(then);

if let ast::ExprKind::If(

ref check_inner,

ref content,

None

) = inner.node;

then {

if expr.span.ctxt() != inner.span.ctxt() {

return;

}

// Report finding...

}

}

}

/// If the block contains only one expression, return it.

fn expr_block(block: &ast::Block) -> Option<&ast::Expr> {

let mut it = block.stmts.iter();

if let (Some(stmt), None) = (it.next(), it.next()) {

match stmt.node {

ast::StmtKind::Expr(ref expr)

| ast::StmtKind::Semi(ref expr) => Some(expr),
_ => None,

}

} else {

None

}

}
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4.1.2. Pattern-based implementation

Using a pattern tree for a subset of Rust (see section 3.4), patterns and the two pattern

functions described in section 2.3, the same static analysis was re-implemented in the

following way:

pattern!{

pat_if_without_else : Expr =

If(
_#check,

Block(

expr_or_semi( If(_#check_inner, _#content, ())#inner )

)#then,

()

)

}

pattern!{

pat_if_else : Expr =

if_or_if_let(
_,

Block_(

Block(

expr_or_semi( if_or_if_let(_, _?)#else_ )

)#block_inner

)#block

)

}

impl EarlyLintPass for CollapsibleIf {

fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {

if in_macro(expr.span) {

return;

}

match pat_if_without_else (expr) {

Some(res) => {

if !block_starts_with_comment(cx, res.then) &&

expr.span.ctxt() == res.inner.span.ctxt()

{

// Report finding...

}

},
_ => ()

}
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match pat_if_else (expr) {

Some(res) => {

if !block_starts_with_comment(cx, res.block_inner) &&

!in_macro(res.else_.span)

{

// Report finding...

}

},
_ => ()

};

}

}

The di�erences between the pattern-based and baseline implementation are discussed in

section 4.4.

4.2. Meta patterns

In addition to the collapsible-if static analysis for Rust code, static analyses for another

language were implemented as well. The language patterns are speci�ed in was chosen

as the target language. Using this language allows writing static analyses that analyze

pattern speci�cations themselves, which makes them meta-patterns.

For example, the following pattern detects repetitions (e.g. _{0,1}) that can be replaced

with the ? operator (e.g. _?):

meta_pattern!{

meta_pat_complicated_range: ParseTree =

Repetition(_, Range(0, 1))

}

As another example, the following pattern detects alternatives where one branch matches

any node (e.g. _ | Lit(_)) which makes the other branch useless:

meta_pattern!{

meta_pat_any_or: ParseTree =

Alt(Any, _) | Alt(_, Any)

}

The pattern tree created for the pattern syntax is shown in the appendix (section A.4.2).
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4.3. Request for Comments (RFC)

The basic concept was published as a Request for Comments (RFC) to the developers of

the Clippy project. The RFC can be found here:

https://github.com/rust-lang/rust-clippy/pull/3875

The RFC was reviewed by a number of developers and yielded no major issues. Sugges-

tions expressed by reviewers are presented in the the discussion and marked as external

contributions.

4.4. Discussion

The following sections present a discussion of the proposed concept and implementation.

The structure of the discussion follows the requirements identi�ed in section 1.1 and 1.2.

The following properties are discussed:

• Expressiveness

• Language- / Implementation-independence

• Extensibility

• Composibility

• Usability

4.4.1. Expressiveness

The evaluation shows that existing non-trivial real-world static analyses can be imple-

mented using the proposed concept. The collapsible-if re-implementation using pat-

terns passes all tests written for the baseline implementation while being more compact

than the baseline implementation. The pattern-based implementation uses 52 lines of code

while the baseline implementation uses 68. Because lines of code aren’t well suited for

comparing the amount of code necessary, the two implementations were also compared in

their number of characters when comments and non-necessary whitespace were removed.

This comparison shows that the pattern-based implementation (using 620 characters)

was only 46% the size of the original implementation (1349 characters). This shows that

the pattern-based implementation can express this static analysis more succinctly and

indicates that it might be more expressive in that domain in general. A major reason

for this is that patterns are speci�ed declaratively and using a domain-speci�c language.

On the other hand, the domain-speci�c pattern language also limits its expressiveness

compared to a general-purpose programming language. To account for this, the concept

provides extension mechanisms which are discussed in section 4.4.3.
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The evaluation also shows that the concept is general enough to be applied to di�erent

languages. The patterns presented in section 4.2 analyze pattern syntax itself instead of

Rust syntax.

4.4.2. Language- / Implementation-independence

Implementation details are not part of pattern de�nitions. This means that changing the

implementation doesn’t necessarily require changes in patterns. For example, adding

another indirection (e.g. Box<...>) in rust’s AST data structure would only require chang-

ing the IsMatch implementation. Existing patterns wouldn’t have to be changed. This

decoupling allows IRs to evolve without requiring large changes in static analysis tools.

The second aspect is language-independence. The concept is designed to be applicable to

di�erent languages. The syntax patterns are speci�ed in is language-agnostic and pattern

trees for di�erent languages can be speci�ed easily. Language-independence allows using

the same concepts for di�erent languages, which reduces required implementation work.

Additionally, this also means that users only need to learn the concepts once and can apply

them in di�erent contexts afterwards.

4.4.3. Extensibility

Named submatches in patterns allow patterns to return references to IR nodes. These refer-

ences can then be used within a general-purpose programming language to perform addi-

tional checks. For example, the implementation of the collapsible-if static analysis (see

section 4.1) uses named submatches for additional checks (e.g. in the block_starts_with_

comment(...) function call.

Extensibility allows optimizing for common cases while having full �exibility when needed.

It allows writing lints in two stages. In the �rst stage, a coarse matching is performed using

patterns. In the second stage, the results of the �rst stage are �ltered using the �exibility

of a general-purpose programming language. The collapsible-if static analysis is an

example of this.

4.4.4. Composibility

Pattern functions (see section 2.3) allow reusing parts of patterns. This includes using

similar sub-patterns multiple times within a pattern and also sharing common sub-patterns

between multiple patterns.

An alternative to pattern functions would have been to introduce variables that allowed

using the same sub-pattern in multiple places. The concept uses pattern functions instead
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of variables because they are more expressive. Variables can be seen as functions without

any arguments. Allowing functions that can take arguments is therefore more expressive

and more powerful as a concept of composition.

Two pattern functions were used in the collapsible-if static analysis (see section 4.1)

which eliminated repetition within the patterns and simpli�ed their implementation. The

pattern functions used can be de�ned in other crates which allows creating libraries of

common pattern functions.

4.4.5. Usability

The pattern syntax itself is kept as simple as possible. It reuses common function syntax

(<name>(<arg1>, <arg2>, ...)) and syntactic elements known from REs (e.g. syntax for

repetitions and alternatives). These factors should make learning the syntax relatively

simple for the majority of users.

In addition to the pattern syntax, users also need to know which nodes are valid in which

positions in a pattern. The corresponding pattern tree de�nition of a pattern provides this

information in a form that should be comprehensible to most users.

A remaining usability problem is that users usually don’t think about their code in a IR-like

structure. Instead, they think about it in its textual representation. Mapping the textual

representation users are used to to a pattern that matches it is a non-trivial task and

requires users to know and understand their language’s IR-like structure. This problem

could be solved by a tool that takes a code sample as input and generates a pattern that

matches exactly this code. This idea is described in section 5.1.5 in more detail.

The evaluation of the collapsible-if static analysis shows that pattern-based static

analyses require less code. It also shows that the code required in the host programming

language is much simpler in the pattern-based implementation.

While the observations described above suggest that the usability of pattern-based static

analyses might be better than the usability of traditional static analyses, this thesis doesn’t

provide a de�nitive answer to this question.

62



5. Conclusion

This thesis has proposed, implemented and evaluated a DSL that allows specifying static

analyses. It succeeded in providing a language- and implementation-independent solution

and several factors indicate that specifying static analyses using the proposed system is

easier than using traditional approaches.

In the future, systems like the one presented in this thesis could be used to write a larger

number of more powerful static analyses. This could have a huge positive impact on the

e�ciency of software development. The general idea of automatically detecting imperfect

code and replacing it with better solutions could both educate users and also reduce the

accidental complexity of software systems. For example, an advanced static analysis could

even detect implementations for which a maintained and mature library exists and could

suggest to use that. This would reduce the amount of code a developer would have to

maintain and would also help the adoption of well-maintained projects.

5.1. Outlook

While the concept presented in this thesis is able to ful�ll its requirements, a number of

possible extensions and opportunities were discovered during its development. These

ideas are presented in the following sections.

5.1.1. Early filtering

In the current concept, static analyses are written in two stages (see section 4.4.3). This

can lead to unnecessary work in some cases. For example, a static analysis that detects

functions with long names would have to detect any functions in the �rst stage and �lter

their names in the second stage. Instead of applying additional �lters after the whole

pattern was matched in the �rst stage, �lters could be checked while their relevant part of

the pattern was matched.

The following pattern shows how this could look like:

pattern!{

pat_if_without_else: Expr =
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If(
_,

Block(

expr_or_semi( If(_, _, ())#inner )

)#then,

()

)

where

!in_macro(#then.span);

}

In the pattern above, the condition (!in_macro(#then.span)) would be evaluated as soon

as the Block(...)#then sub-pattern was matched.

5.1.2. User study

As described in section 4.4.5, the usability of the proposed concept compared to traditional

approaches remains an open research question. Future research could execute user studies

to assess the concept’s usability.

5.1.3. Match descendant

A common case in static analyses is that a node needs to have child nodes that conform to

some criteria without the nodes having to be direct children. An example of this would

be a static analysis that matches “a function that contains at least two return statements”.

The current concept does not support this case natively, so these static analyses need to

be implemented using extensions in the host programming language. Supporting this use

case in patterns themselves could simplify the implementation of a lot of static analyses.

5.1.4. Named parameters

As part of his feedback on the RFC (see section 4.3), Manish Goregaokar pointed out that

named parameters could be used to improve the readability of patterns. For pattern tree

nodes that have multiple parameters, names could be useful to clarify the meaning of each

parameter. For example, using If(cond=_, then=_, else=_) in a pattern would be more

descriptive than If(_, _, _).
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5.1.5. Clippy Pattern Author

As described in section 4.4.5, users of patterns need to know how certain code is represented

in the pattern tree. A tool that’d take code as input and produces a pattern that matches

this code could help users to understand the relationship between program code and

patterns that match it. Such a tool would also be helpful in the development of new static

analyses, where users could provide di�erent example inputs and then create a pattern

that matches all inputs from the di�erent outputs of the tool.
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A.1. Project structure

common pattern-tree-macro

pattern-macro-gen-macro

pattern-match

pattern-tree

pattern

pattern-macro

pattern-macro-gen

pattern-func-macro

pattern-func

pattern-func-lib

pattern-parse

test / test-clippy

is-match-macro

IRs

Figure A.1.: Full project structure including helper and test crates.
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A.2. Syntax definitions

A.2.1. Pattern syntax

patternDef = ident, ":", patternType, "=", pattern;

patternType = ident | repeatType;

repeatType = repType, "<", ident, ">";

repType = "Alt" | "Seq" | "Opt";

pattern = singlePattern | sequence | alternative;

sequence = pattern, [ ";" ], pattern;

alternative = pattern, "|", pattern;

singlePattern = atomExpr, [ rep ], [ name ];

rep = "+" | "*" | "?" | repBraced;

repBraced = "{", repRange, "}";

repRange = repeat | range;

repeat = litInt;

range = litInt, ",", [ litInt ];

name = "#", ident;

atomExpr = "_" | nodeExpr | emptyExpr | "(", pattern, ")" | lit;

emptyExpr = "(", ")";

nodeExpr = ident, [ nodeExprParens ];

nodeExprParens = "(", nodeExprArgs, ")";

nodeExprArgs = pattern, { ",", pattern };

A.2.2. Pattern Tree syntax

patternTree = { ptDef };

ptDef = ident, "=", ptVariant, { "|", ptVariant };

ptVariant = ident, [ ptArgs ];

ptArgs = "(", ptArg, { ",", ptArg }, ")";

ptArg = ident, [ "*" | "?" ], ["<>", ident];
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A.3. Generic IsMatch Implementations

A.3.1. Seq

impl<'cx, 'o, T, U, V, Cx: Clone> IsMatch<'cx, 'o, Cx, [V]>

for Seq<'cx, 'o, T, Cx, U>

where

T: IsMatch<'cx, 'o, Cx, U>,

V: Reduce<Target=U>

{

fn is_match(&self, cx: &'cx mut Cx, other: &'o [V])

-> (bool, &'cx mut Cx) {

let mut cx = cx;

match self {

Seq::Any => (other.len() == 1, cx),

Seq::Elmt(e) => {

if other.len() != 1 { return (false, cx); }

e.is_match(cx, &other[0].reduce())

},

Seq::Named(e, f) => {

let (r, mut cx) = e.is_match(cx, other);

if r {

for o in other {

cx = f(cx, o.reduce());

}

}

(r, cx)

},

Seq::Alt(i, j) => {

let (r_i, cx) = i.is_match(cx, other);

// early return if first alternative matched

if r_i {

return (r_i, cx);

}

j.is_match(cx, other)

},

Seq::Empty => (other.is_empty(), cx),

Seq::Repeat(e, r) => {

let cx_orig = cx.clone();

let e_range = e.num_elmts_range();

let e_range = e_range.start..

e_range.end.unwrap_or(other.len()+1);
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if r.start == 0 && other.is_empty() {

return (true, cx);

}

for i in r.start..r.end.unwrap_or(other.len()+1) {

let iterators = repeat_n(e_range.clone(), i)

.multi_cartesian_product()

.filter(|x| x.iter().sum::<usize>() == other.len());

'outer: for vals in iterators {

*cx = cx_orig.clone();

let mut skip = 0;

for v in &vals {

let (r_e, cx_tmp) = e.is_match(

cx, &other[skip..skip+v]

);

cx = cx_tmp;

if !r_e {

continue 'outer;

}

skip += v;

}

return (true, cx);

}

}

*cx = cx_orig;

(false, cx)

},

Seq::Seq(a, b) => {

let cx_orig = cx.clone();

let range = a.num_elmts_range();

for i in range.start..range.end.unwrap_or(other.len()+1) {

*cx = cx_orig.clone();

if i > other.len() {

break;

}

let (l, r) = other.split_at(i);

let (r_a, cx_tmp) = a.is_match(cx, l);

cx = cx_tmp;

if r_a {

let (r_b, cx_tmp) = b.is_match(cx, r);

cx = cx_tmp;

if r_b {

return (true, cx);
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}

}

}

*cx = cx_orig;

(false, cx)

},

}

}

}

A.3.2. Opt

impl<'cx, 'o, T, U, V, Cx: Clone> IsMatch<'cx, 'o, Cx, Option<V>>

for Opt<'cx, 'o, T, Cx, U>

where

T: IsMatch<'cx, 'o, Cx, U>,

V: Reduce<Target=U>

{

fn is_match(&self, cx: &'cx mut Cx, other: &'o Option<V>)

-> (bool, &'cx mut Cx) {

match self {

Opt::Any => (other.is_some(), cx),

Opt::Elmt(e) => match other {

Some(other) => e.is_match(cx, other.reduce()),

None => (false, cx)

},

Opt::Named(e, f) => {

let (r, mut cx) = e.is_match(cx, other);

if r {

if let Some(o) = other {

cx = f(cx, o.reduce())

}

}

(r, cx)

},

Opt::Alt(i, j) => {

let (r_i, cx) = i.is_match(cx, other);

// early return if first alternative matched

if r_i {

return (r_i, cx);

}

j.is_match(cx, other)

},
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Opt::None => (other.is_none(), cx),

}

}

}

A.4. Pattern Tree definitions

A.4.1. Rust Pattern Tree

Expr = Lit(Lit)

| Array(Expr*)

| Block_(BlockType)

| If(Expr, BlockType, Expr?)

| IfLet(BlockType, Expr?)

Lit = Char(char)

| Bool(bool)

| Int(u128, LitIntType)

| Str(str<>Symbol)

BlockType = Block(Stmt*)

Stmt = Expr(Expr)

| Semi(Expr)

LitIntType = Signed(IntTy)

| Unsigned(UintTy)

| Unsuffixed

IntTy = Isize

| I8

| I16

| I32

| I64

| I128

UintTy = Usize

| U8

| U16

| U32

| U64

| U128
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A.4.2. Pattern Syntax Pattern Tree

ParseTree = Node(str<>Ident, ParseTree*)

| Alt(ParseTree, ParseTree)

| Seq(ParseTree, ParseTree)

| Repetition(ParseTree, RepeatKind)

| Named(ParseTree, str<>Ident)

| Lit(Lit)

| Any

| Empty

RepeatKind = Any

| Plus

| Optional

| Range(u128<>LitInt, u128?<>LitInt)

| Repeat(u128<>LitInt)

Lit = Bool(bool<>LitBool)

| Int(u128<>LitInt)

| Char(char<>LitChar)

A.5. IsMatch implementation of Expr

impl<'cx, 'o, Cx: Clone> IsMatch<'cx, 'o, Cx, ast::ExprKind>

for Expr<'cx, 'o, Cx, Ast> {

fn is_match(&self, cx: &'cx mut Cx, other: &'o ast::ExprKind)

-> (bool, &'cx mut Cx) {

match (self, other) {

(Expr::Lit(l_a), ast::ExprKind::Lit(l_b))

=> l_a.is_match(cx, l_b),

(Expr::Lit(l_a), _) => (false, cx),

(Expr::Block_(b_a), ast::ExprKind::Block(b_b, _label_b))

=> b_a.is_match(cx, b_b),

(Expr::Block_(b_a), _) => (false, cx),

(Expr::Array(a_a), ast::ExprKind::Array(a_b))

=> a_a.is_match(cx, a_b),

(Expr::Array(a_a), _) => (false, cx),

(Expr::If(check_a, then_a, else__a),

ast::ExprKind::If(check_b, then_b, else__b)) => {

let cx_orig = cx.clone();

let (r, cx) = check_a.is_match(cx, check_b);

if !r {
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*cx = cx_orig;

return (false, cx);

}

let (r, cx) = then_a.is_match(cx, then_b);

if !r {

*cx = cx_orig;

return (false, cx);

}

let (r, cx) = else__a.is_match(cx, else__b);

if !r{

*cx = cx_orig;

return (false, cx);

}

(true, cx)

},

(Expr::If(check_a, then_a, else__a), _) => (false, cx),

(Expr::IfLet(then_a, else__a),

ast::ExprKind::IfLet(
_pattern_b, _check_b, then_b, else__b

)) => {

let cx_orig = cx.clone();

let (r, cx) = then_a.is_match(cx, then_b);

if !r {

*cx = cx_orig;

return (false, cx);

}

let (r, cx) = else__a.is_match(cx, else__b);

if !r {

*cx = cx_orig;

return (false, cx);

}

(true, cx)

},

(Expr::IfLet(then_a, else__a), _) => (false, cx)

}

}

}

A.6. IsMatch lifetime problem

The is_match(...) function of the IsMatch trait returns a reference to a context object

Cx. This section describes the problem this solves.
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Consider the following simpli�ed example:

pub trait IsMatch<'cx, Cx> {

fn is_match(&self, cx: &'cx mut Cx);

}

struct Alt<T>(T, T);

impl<'cx, T, Cx> IsMatch<'cx, Cx> for Alt<T>

where T: IsMatch<'cx, Cx> {

fn is_match(&self, cx: &'cx mut Cx) {

self.0.is_match(cx);

self.1.is_match(cx);

}

}

The code above doesn’t compile and compiler shows the following error:

error[E0499]: cannot borrow `*cx` as mutable more than once at a time

--> src/lib.rs:11:25

|

7 | impl<'cx, T, Cx> IsMatch<'cx, Cx> for Alt<T>

| --- lifetime `'cx` defined here

...

10 | self.0.is_match(cx);

| -------------------

| | |

| | first mutable borrow occurs here

| argument requires that `*cx` is borrowed for `'cx`

11 | self.1.is_match(cx);

| ^^ second mutable borrow occurs here

The problem here is that both calls to the is_match function need to mutably borrow the

variable cx for the same lifetime ’cx. Since Rust only allows a single mutable borrow, the

compilation fails.

To address this issue, it’s possible to let the is_match function return the mutable reference

it got as its argument and pass that to subsequent calls where the context is needed. The

code below shows this:

pub trait IsMatch<'cx, Cx> {

fn is_match(&self, cx: &'cx mut Cx) -> &'cx mut Cx;

}

struct Alt<T>(T, T);
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impl<'cx, T, Cx> IsMatch<'cx, Cx> for Alt<T>

where T: IsMatch<'cx, Cx> {

fn is_match(&self, cx: &'cx mut Cx) -> &'cx mut Cx {

let cx2 = self.0.is_match(cx);

self.1.is_match(cx2)

}

}

The code above satis�es the conditions enforced by the borrow checker and compiles

successfully. The reason this example works is that it uses two distinct variables cx and

cx2 that point to the same object. Each of these variables are only borrowed once.
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Glossary

(E)BNF (Extended) Backus-Naur form. 8

AST Abstract Syntax Tree. 3, 5, 7–9, 18–20, 23, 61

DSL Domain-Speci�c Language. i, iii, 4, 5, 27, 63

IR Intermediate Representation. 3–5, 8, 13, 16, 23–25, 27–29, 34, 37, 39–41, 43–51, 61, 62

RE Regular Expression. 4, 7, 9–11, 62

RFC Request for Comments. vi, 60, 64
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